The principle of composition and decomposition of properties in modal interpretations of quantum mechanics

Authors

DOI:

https://doi.org/10.35588/cc.v6d7883

Keywords:

actualization rule, modal interpretations, ontology of quantum mechanics, property composition principle, property decomposition principle

Abstract

Modal interpretations of quantum mechanics were developed in the 1980s with the aim of explaining quantum measurement without invoking a collapse of the wave function. One of the key factors that influenced the evolution of these interpretations was their compliance with the principle of composition and decomposition of properties, which establishes the correspondence between the properties of composite systems and those of their subsystems. In several of the earliest modal interpretations, however, this principle is not satisfied. This limitation motivated the development of alternative versions designed to overcome such inadequacy, among them the modal-Hamiltonian interpretation. In this article, we examine the precise sense in which the principle of composition and decomposition of properties fails in certain modal interpretations and how this problem is resolved in others. We also explore whether the restrictions imposed by the modal-Hamiltonian interpretation on its actualization rule can be relaxed without compromising its consistency with the principle.

Downloads

Download data is not yet available.

References

Ardenghi, J. A., Lombardi, O. (2011). “The Modal-Hamiltonian Interpretation of quantum mechanics as a kind of “atomic” interpretation”. Physics Research International 2011, 379604.

Ardenghi, J. S. y Lombardi, O. (2012). “Interpretación modal-Hamiltoniana: una versión invariante ante las transformaciones de Galileo”. En: Celestino Silva, C. y Salvatico, L. (eds.), Filosofia e História da Ciência no Cone Sul. Porto Alegre: AFHIC, 222–230.

Ardenghi, J. S., Castagnino, M. y Lombardi, O. (2009). “Quantum mechanics: Modal interpretation and Galilean transformations”. Foundations of Physics. 39, 1023–1045

Ardenghi, J. S., Lombardi, O. y Narvaja, M. (2011). “Modal interpretations and consecutive measurements”. En: Karakostas, V., y Dieks, D. (eds.), EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science. Springer, Dordrecht, 207–217.

Bacciagaluppi, G. y Dickson, M. (1999). “Dynamics for modal interpretations”. Foundations of Physics 29, 1165–1201.

Bacciagaluppi, G. (1995). “Kochen-Specker theorem in the modal interpretation”, International Journal of Theoretical Physics 34, 1205–1215.

Bacciagaluppi, G. y Hemmo, M. (1996). “Modal interpretations, decoherence and measurements”. Studies in History and Philosophy of Modern Physics 27, 239–277

Ballentine, L. (1998). Quantum Mechanics: A Modern Development. World Scientific, Singapore.

Bene, G. y Dieks, D. (2002). “A perspectival version of the modal interpretation of quantum mechanics and the origin of macroscopic behavior”. Foundations of Physics 32, 645–671.

Castagnino, M. y Lombardi, O. (2008). “The role of the Hamiltonian in the interpretation of quantum mechanics”. Journal of Physics. Conferences Series 28, 012014.

Clifton, R. K. (1996). “The properties of modal interpretations of quantum mechanics”. British Journal for the Philosophy of Science 47, 371–398.

da Costa, N. y Lombardi, O. (2014). “Quantum mechanics: Ontology without individuals”. Foundations of Physics 44, 1246–1257.

da Costa, N., Lombardi, O. y Lastiri, M. (2013). “A modal ontology of properties for quantum mechanics”. Synthese 190, 3671-3693.

De Witt, B. S. M. (1970). “Quantum mechanics and reality”. Physics Today 23, 30–35.

Dieks, D. (1988). “The formalism of quantum theory: an objective description of reality?”. Annalen der Physik 7, 174–190. 302

Dieks, D. (1989). “Resolution of the measurement problem through decoherence of the quantum state”. Physics Letters A 142, 439–446.

Dieks, D. (1998). “Preferred factorizations and consistent property attribution”. En: Healey, R. y Hellman, G. (eds.) Quantum Measurement: Beyond Paradox. University of Minnesota Press, Minneapolis, 144–160

Dieks, D. (2019). “Quantum reality, perspectivalism and covariance”. Foundations of Physics 49, 629–646.

Fortin, S. y Lombardi, O. (2022). “Entanglement and indistinguishability in a quantum ontology of properties”. Studies in History and Philosophy of Science 91, 234–243.

Fortin, S., Lombardi, O. y Martínez González, J. C. (2018). “A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism”. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62, 123–135.

Gilton, M. J. R. (2016). “Whence the eigenstate–eigenvalue link?” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 55: 92-100.

Kochen, S. (1985). “A new interpretation of quantum mechanics”. En: Lahti, P. J. y Mittelsteadt, P. (eds.) Symposium on the Foundations of Modern Physics, World Scientific, Singapur, 151–169.

Lombardi, O. y Ardenghi, J. S. (2022). “How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation”. Foundations of Physics 52, 64.

Lombardi, O. y Castagnino, M. (2008). “A modal-Hamiltonian interpretation of quantum mechanics”. Studies in History and Philosophy of Modern Physics 39, 380–443.

Lombardi, O. y Dieks, D. (2021). “Modal Interpretations of Quantum Mechanics”. En: Zalta, E. N. (ed.) The Stanford Encyclopedia of Philosophy, URL = <https://plato.stanford.edu/entries/qm-modal/>.

Lombardi, O. y Fortin, S. (2015). “The role of symmetry in the interpretation of quantum mechanics”. Electronic Journal of Theoretical Physics 12, 255–272.

Lombardi, O., Ardenghi, S., Fortin, S. y Castagnino, M. (2011). “Compatibility between environment-induced decoherence and the modal-Hamiltonian interpretation of quantum mechanics”. Philosophy of Science 78, 1024–1036.

Lombardi, O., Castagnino, M. y Ardenghi, J. S. (2010). “The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics”. Studies in History and Philosophy of Modern Physics 41, 93–103.

van Fraassen, B. C. (1972). “A Formal Approach to the Philosophy of Science”. En: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain. University of Pittsburgh Press, 303–366.

Vermaas, P. (1998). “The pros and cons of the Kochen–Dieks and the atomic modal interpretation”. En: Dieks, D. y Vermas, P. (eds.) The modal interpretation of quantum mechanics. Kluwer, Dordrecht, 103–148.

Vermaas, P. y Dieks, D. (1995). “The modal interpretation of quantum mechanics and its generalization to density operators”. Foundations of Physics 25, 145–158.

von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Springer, Berlin.

Downloads

Submitted

2025-12-26

Published

2025-12-26

Issue

Section

Dossier: Philosophy and Foundations of Physics

How to Cite

The principle of composition and decomposition of properties in modal interpretations of quantum mechanics. (2025). Culturas Científicas, 6(1). https://doi.org/10.35588/cc.v6d7883

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.