Contemporary Problems in the Philosophy of Biochemistry
Lessons From Protein Folding and the In-vitro/in-vivo Problem
DOI:
https://doi.org/10.35588/cc.v3i1.5584Keywords:
Biochemistry, Protein folding, In-vitro/in-vivo, Pluralism, ReductionismAbstract
Although examples coming from biochemistry have already been explored in the philosophy of sciences as case studies, the philosophy of biochemistry (i.e. the systematic philosophical study of the metascientific problems of this science) is a nascent subdiscipline. In this article, two philosophical problems of contemporary relevance within this science will be explored. First, we are going to examine the epistemological bases of the protein folding problem, mostly concerning protein 3D structure prediction from its sequence, which has given much to talk about due to new advances involving deep learning. Second, we will explore the in-vitro/in-vivo problem and, more generally, the extrapolation problem in biological sciences. Finally, taking into account the consequences of both subjects, we will consider some philosophical reflections about reductionism, pluralism and the place of biochemistry among biological sciences.
Downloads
References
Abeln, S., Feenstra, K. A. y Heringa, J. (2019). “Protein Three-Dimensional Structure Prediction”. Encyclopedia of Bioinformatics and Computational Biology, 2: 497-511. https://doi.org/h6mf
Alassia, F. (2022). “¿Es posible una ontología procesual de las entidades bioquímicas? Consideraciones a partir del caso de los receptores celulares y la señalización celular”. Estudios De Filosofía, (65): 153–175. https://doi.org/h6mg
Alleva, K., Díez, J. y Federico, L. (2017). “Models, theory structure and mechanisms in biochemistry: The case of allosterism”. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 63: 1-14. https://doi.org/h6mh
AlQuraishi, M. (2019). “AlphaFold at CASP13”. Bioinformatics, 35(22): 4862–4865, https://doi.org/gh6r9r
AlQuraishi, M. (2020). AlphaFold2 at CASP14: “It feels like one’s child has left home”. https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-it-feels-like-ones-child-has-left-home/
Anfinsen C. B., Haber, E., Sela, M. y White F. H. Jr. (1961). “The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain”. PNAS, 47(9): 1309–1314. https://doi.org/crb44z
Anfinsen, C. B. (1973). “Principles that govern the folding of protein chains”. Science, 181(4096): 223–230. https://doi.org/fhqn24
Ankeny, R. (2001). “Model Organisms as Models: Understanding the ‘Lingua Franca’ of the Human Genome Project”. Philosophy of Science, 68(S3): S251-S261. https://doi.org/csq853
Ankeny, R. y Leonelli, S. (2021). Model Organisms. Cambridge University Press.
Ankeny, R., y Leonelli, S. (2011). “What’s so special about model organisms?”. Studies in History and Philosophy of Science Part A, 42: 313–323. https://doi.org/c2z88z
Baetu, T. (2019). Mechanisms in molecular biology. Cambridge University Press.
Baetu, T. 2016. "The ‘Big Picture’: The Problem of Extrapolation in Basic Research". British Journal for the Philosophy of Science, 67(4): 941-964. https://doi.org/gdxrgk
Bartol, J. (2016). “Biochemical Kinds”. The British Journal for the Philosophy of Science, 67(2): 531–551. https://doi.org/f3r4v2
Beatty, J. (1997) "Why do biologists argue like they do?". Philosophy of Science 64 (S4): s432-s443. https://doi.org/cdrcr4
Bechtel, W. y Richardson, R. C. (1993). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Cambridge: MIT Press.
Berman H. M. (2008). “The Protein Data Bank: a historical perspective”. Acta Crystallogr A., 64(Pt 1): 88-95. https://doi.org/chm79x
Berman H. M. y Gierasch L. M. (2021). “How the Protein Data Bank changed biology: An introduction to the JBC Reviews thematic series, part 1”. Journal of Biological Chemistry. 296: 100608. https://doi.org/h6mk
Bolker, J. (1995). “Model systems in developmental biology”. BioEssays, 17: 451–455. https://doi.org/dtgp7f
Bolker, J. (2009). “Exemplary and surrogate models: Two modes of representation in biology”. Perspectives in Biology and Medicine, 52; 485–499. https://doi.org/gmv82t
Brigandt, I. y Love, A. (2017). "Reductionism in Biology". En E. N. Zalta (ed.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/sum2022/entries/reduction-biology/
Briggs, H. (2020). One of biology's biggest mysteries 'largely solved' by AI. BBC News. https://www.bbc.com/news/science-environment-55133972
Burian, R. (1993). “How the Choice of Experimental Organism Matters: Epistemological Reflections on an Aspect of Biological Practice”. Journal of the History of Biology, 26: 351–367. https://doi.org/dccgkp
Burian, R. (1995). “Comments on Rheinberger”. En G. Wolters, J. G. Lennox y P. McLaughlin (eds.). Concepts, Theories, and Rationality in the Biological Sciences. Pittsburgh: University of Pittsburgh Press.
Clarke, A. E. y Fujimura J. H. (1992). The Right Tools for the Job. At Work in Twentieth-century Life Sciences. Princeton: Princeton University Press.
Collins, H. M. (1987). Changing order: Replication and induction in scientific practice. Chicago: Chicago University Press.
Culp, S. (1995). “Objectivity in Experimental Inquiry: Breaking Data-Technique Circles”, Philosophy of Science, 62: 430–450. https://doi.org/cnmfg4
Culp, S. (1997). “Establishing genotype/phenotype relationships: Gene targeting as an experimental approach”. Philosophy of Science, 64(4): S268–S278. https://doi.org/fmscjj
Dahlin, J., Inglese, J. y Walters, M. (2015) “Mitigating risk in academic preclinical drug discovery”. Nature Reviews Drug Discovery, 14: 279–294. https://doi.org/10.1038/nrd4578
de Chadarevian, S. (2011). Designs for Life: Molecular Biology after World War II. Cambridge University Press.
Douglas, H. (2000). “Inductive risk and values in science”. Philosophy of Science, 67: 559–579. https://doi.org/djjsrh
Douglas, H. (2009). Science, Policy, and the Value-Free Ideal. University of Pittsburgh Press.
Eronen, M. (2015). “Robustness and reality”. Synthese”. 192: 3961–3977. https://doi.org/gns9h2
Esposito, M. y Vallejos, G. (2020). “Performative Epistemology and the Philosophy of Experimental Biology: A Synoptic Overview”. En Baravalle, L. y Zaterka, L. (eds.). Life and Evolution. Latin American Essays on the History and Philosophy of Biology. Springer.
Evans P, McCoy A. (2008). “An introduction to molecular replacement”. Acta Crystallographica Section D, 64(Pt 1): 1-10. https://doi.org/br4pq6
Fasman, G. D. (1989). “The Development of the Prediction of Protein Structure”. En G.D Fasman (ed.). Prediction of Protein Structure and the Principles of Protein Conformation. Boston: Springer. https://doi.org/dwgxck
Fersht, A. (2017). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. Singapore: World Scientific. https://doi.org/h6nf
Figueroa, M., Sleutel, M., Vandevenne, M., Parvizi, G., Attout, S., Jacquin, O., Vandenameele, J., Fischer, A. W., Damblon, C., Goormaghtigh, E., Valerio-Lepiniec, M., Urvoas, A., Durand, D., Pardon, E., Steyaert, J., Minard, P., Maes, D., Meiler, J., Matagne, A., Martial, J. A. y Van de Weerdt, C. (2016). “The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools”. Journal of Structural Biology, 195(1): 19-30. https://doi.org/f8rjfk
Gannett, L. (1999). “What’s in a cause? The pragmatic dimensions of genetic explanations”. Biol. Philos, 14(3): 349–373. https://doi.org/ccj9cc
García P. (2015). "Computer simulations and experiments: in vivo–in vitro conditions in biochemistry". Foundations of Chemistry, 17(1): 49-65. https://doi.org/gns9kd
Gelfert, A. (2011). "Scientific models, simulation, and the experimenter's regress". En P. Humphreys y C. Imbert (eds.). Models, Simulations, and Representations. Routledge.
Gomes, C. y Faísca, P. (2019). Protein Folding: An Introduction. Springer.
Goodwin, W. (2011). “Structure, function, and protein taxonomy”. Biology & Philosophy, 26: 533–545. https://doi.org/cft53x
Guttinger, S. (2018). “A Process Ontology for Macromolecular Biology”. En D. J. Nicholson y J. Dupré (eds.). Everything Flows: Towards a Processual Philosophy of Biology. Oxford: Oxford University Press.
Havstad, J. C. (2018). “Messy chemical kinds”. The British Journal for the Philosophy of Science, 69(3): 719–743. https://doi.org/gd7gk6
Hossenfelder, S. (2021). Has Protein Folding Been Solved? [Archivo de video]. Youtube. https://youtu.be/yhJWAdZl-Ck
Hüttemann, A., y Love, A. C. (2011). “Aspects of reductive explanation in biological science: intrinsicality, fundamentality, and temporality”, British Journal for the Philosophy of Science, 62(3): 519–549. https://doi.org/bqt6s8
Ibarra, A. y Mormann, T. (2006). "Scientific Theories as Intervening Representations" Theoria, 21(55): 21-38.
Jacob, C. (2002). “Philosophy and biochemistry: Research at the interface between chemistry and biology”. Foundations of Chemistry, 4(2): 97-125. https://doi.org/dw74mq
Jha, S. K., Ramanathan, A., Ewetz, R., Velasquez, A., Jha, A. (2021). "Protein Folding Neural Networks Are Not Robust". arXiv. https://doi.org/h6nh
Jumper, J., Evans, R., Pritzel, A. et al. (2021). “Highly accurate protein structure prediction with AlphaFold”. Nature, 596: 583–589. https://doi.org/gk7nfp
Kaczanowski, S., Zielenkiewicz, P. (2010). “Why similar protein sequences encode similar three-dimensional structures?”. Theoretical Chemistry Accounts, 125: 643–650. https://doi.org/brn227
Kaiser, M. I. (2011). “The limits of reductionism in the life sciences”. History and Philosophy of the Life Sciences, 33: 453–476.
Kaiser, M. I. (2018). "Individuating Part-whole Relations in the Biological World". En O. Bueno, R. L. Chen y M. B. Fagan (eds.). Individuation Across Experimental and Theoretical Sciences. Oxford University Press.
Kelley, L. A. (2017). “Fold Recognition”. En D. J. Rigden (ed.) From Protein Structure to Function with Bioinformatics. Dordrecht: Springer. https://doi.org/h6nj
Kohler, R. (1994). Lords of the Fly: Drosophila genetics and the experimental life. Chicago: Chicago University Press.
Krebs, J., Goldstein, E., Kilpatrick, S. (2017). Lewin's GENES XII. Jones & Bartlett Learning
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., Moult, J. (2019). "Critical assessment of methods of protein structure prediction (CASP)—Round XIII". Proteins, 87(12): 1011-1020. https://doi.org/ggjr6z
LaFollette, H., y Shanks, N. (1993). “Animal models in biomedical research: Some epistemological worries”. Public Affairs Quarterly, 7: 113–130.
LaFollette, H., y Shanks, N. (1995). “Two models of models in biomedical research”. The Philosophical Quarterly, 45: 141–160.
Laskowski, R. A. (2011). “Protein Structure Databases”. Molecular Biotechnology, 48: 183–198. https://doi.org/fds976
Lee, J., Freddolino, P. L., Zhang, Y. (2017). “Ab Initio Protein Structure Prediction”. En D, J. Rigden (ed.). From Protein Structure to Function with Bioinformatics. Dordrecht: Springer. https://doi.org/h6nm
Levinthal, C. (1968). “Are there pathways for protein folding?” J. Chim. Phys., 65: 44–45. https://doi.org/gfzq6b
Levinthal, C. (1969). “How to fold graciously”. En J. T. P Debrunnder, E. Munck (eds.). Mossbauer spectroscopy in biological systems: proceedings of a meeting held at Allerton House. Monticello: University of Illinois Press.
Lowe, D. (2022). “Fooling the Protein Folding Software”. En Science (Commentary). https://www.science.org/content/blog-post/fooling-protein-folding-software
Lupas, A., Pereira, J., Alva, V., Merino, F., Coles, M. y Hartmann, M. D. (2021). “The breakthrough in protein structure prediction”. Biochemical Journal, 478(10): 1885–1890. https://doi.org/gkqqv5
Masrati, G., Landau, M., Ben-Tal, N., Lupas, A., Kosloff, M. y Kosinski, J. (2021). “Integrative Structural Biology in the Era of Accurate Structure Prediction”. Journal of Molecular Biology, 433(20): 167127. https://doi.org/gk8xcc
McCoy A. J., Sammito M. D., Read R. J. (2022). “Implications of AlphaFold2 for crystallographic phasing by molecular replacement”. Acta Crystallographica Section D, 78(Pt.1): 1-13. https://doi.org/h6np
Mertens, R. (2019). The Construction of Analogy-Based Research Programs: The Lock-and-Key Analogy in 20th Century Biochemistry. Transcript publishing.
Mitchell, S. (2003). Biological Complexity and Integrative Pluralism. Cambridge: Cambridge University Press.
Mitchell, S. D., Gronenborn, A. G. (2017). “After fifty years, why are protein X-ray crystallographers still in business?”. The British Journal for the Philosophy of Science, 68(3): 703–723. https://doi.org/h6nq
Mithcell, S. (2019) “Perspectives, Representation, and Integration”. En M. Massimi y MCoy, C. Understanding Perspectivism: Scientific Challenges and Methodological Prospects. New York: Routledge.
Morange, M. (2006). “The protein side of the central dogma: permanence and change”. History and philosophy of the life sciences, 28(4): 513-24.
Moult, J., Pedersen J. T., Judson, R. y Fidelis, K. (1995). “A large-scale experiment to assess protein structure prediction methods”. Proteins, 23(3): ii-v. https://doi.org/ddzct4
Mullard, A. (2021). “What does AlphaFold mean for drug discovery?”. Nature reviews drug discovery, 20(10): 725-727. https://doi.org/gnn5nw
Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. Brace and World: Harcourt.
Neal, J. (2021). Protein Structure, Dynamics, and Function: A Philosophical Account of Representation and Explanation in Structural Biology. Doctoral dissertation Dietrich School of Arts and Sciences.
Nederbragt, H. (2003). “Strategies to improve the reliability of a theory: The experiment of bacterial invasion into cultured epithelial cells”. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 34: 593–614. https://doi.org/dgcqnh
Obermayer, A. y Uversky V. (2021). “Solving Protein Structure with AI: Viva AlphaFold and Co.!”. Current Protein y Peptide Science 2021, 22(12): 826 – 826. https://doi.org/h6nt
Pearce, R. y Zhang, Y. (2021). “Toward the solution of the protein structure prediction problem”. Journal of Biological Chemistry, 297(1): 100870. https://doi.org/h6nv
Perdigão, N. y Agostinho, R. (2019). "Dark Proteome Database: Studies on Dark Proteins". High-Throughput, 8(2): 8. https://doi.org/h6nw
Perrakis, A. y Sixma, T. K. (2021). “AI revolutions in biology: The joys and perils of AlphaFold”. EMBO Reports, 22: e54046. https://doi.org/h6nx
Ramsey, J. L. (2007). “Calibrating and constructing models of protein folding”. Synthese, 155: 307–320. https://doi.org/dtv3rw
Rheinberger, H. J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford University Press.
Rincon, P. (2021). AI breakthrough could spark medical revolution. BBC News. https://www.bbc.com/news/science-environment-57929095
Rohl, C. A., Strauss, C. E, Misura, K. M. y Baker, D. (2004). “Protein structure prediction using Rosetta”. Methods in Enzymology, 383: 66-93. https://doi.org/btmt9z
Ross, J. L. (2016). “The Dark Matter of Biology”. Biophysical perspective, 111(5): 909-916. https://doi.org/f83v9x
Ross, L. N. (2017). “Causal selection and the pathway concept”. PhilSci Archive. http://philsci-archive.pitt.edu/14361/
Sample, I. (2020). DeepMind AI cracks 50-year-old problem of protein folding. The Guardian. https://www.theguardian.com/technology/2020/nov/30/deepmind-ai-cracks-50-year-old-problem-of-biology-research
Santos, G., Vallejos, G. y Vecchi, D. (2020). “A relational-constructionist account of protein macrostructure and function”. Foundations of Chemistry, 22: 363–382. https://doi.org/h6n2
Sarkar, S. (1992). “Models of reduction and categories of reductionism”. Synthese, 91: 167–194. https://doi.org/crbspz
Schaarschmidt, J., Monastyrskyy, B., Kryshtafovych, A. y Bonvin, A. M. J. J. (2018). “Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age”. Proteins, 86(S1): 51-66. https://doi.org/gc5db4
Senior, A.W., Evans, R., Jumper, J. et al. (2020) “Improved protein structure prediction using potentials from deep learning”. Nature, 577: 706–710. https://doi.org/ggjfcc
Shi, Y. (2014). “A glimpse of structural biology through X-ray crystallography”. Cell, 159(5): 995-1014. https://doi.org/gj9vnk
Sills, G. J. (2006). “The mechanisms of action of gabapentin and pregabalin”. Current Opinion in Pharmacology, 6(1): 108-13. https://doi.org/dw88vh
Slater, M. (2009). “Macromolecular pluralism”. Philosophy of Science, 76(5): 851–863. https://doi.org/gcpcgj
Soler, L., Trizio, E., Nickles, T. y Wimsatt, W. (2012). Characterizing the Robustness of Science: After the Practice Turn in Philosophy of Science. Springer
Steel, D. (2008). Across the boundaries. Extrapolation in biology and social science. Oxford: Oxford University Press.
Strand, R. (1999). "Towards a useful philosophy of biochemistry: Sketches and examples". Foundations of Chemistry, 1(3): 269-292.
Strand, R., Fjelland, R. y Flatmark, T. (1996). "In vivo interpretation of in vitro effect studies with a detailed analysis of the method of in vitro transcription in isolated cell nuclei". Acta Biotheoretica, 44: 1–21. https://doi.org/ctx2cn
Strasser, B.J. (2010) “Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965”. Journal of the History of Biology, 43: 623–660. https://doi.org/bq9n9t
Suárez, E. y Martínez S. (1998). “El problema del reduccionismo en biología: tendencias y debates actuales”. En S. Martínez y A. Barahona. Historia y explicación en Biología. Fondo de Cultura Económica.
Tahko, T. E. (2020). “Where Do You Get Your Protein? Or: Biochemical Realization”. The British Journal for the Philosophy of Science, 71 (3): 799-825. https://doi.org/ghqh22
Tanford, C. y Reynolds, J. A. (2003). Nature’s Robots: A History of Proteins. New York; Oxford: Oxford University Press.
Tee, S-H. (2019). "Model Organisms as Simulators: The Context of Cross-Species Research and Emergence". Axiomathes, 29(4): 363-382. https://doi.org/gns9nw
Tobin, E. (2010). “Microstructuralism and macromolecules: the case of moonlighting proteins”. Foundations of Chemistry, 12: 41–54. https://doi.org/cspgp7
Tunyasuvunakool, K., Adler, J., Wu, Z. et al. (2021). “Highly accurate protein structure prediction for the human proteome”. Nature, 596: 590–596. https://doi.org/gk9kp7
Ureta, T. (2003). En el filo de la navaja de Occam: reflexiones reduccionistas sobre algunos problemas del ser humano. Editorial Universitaria.
Vecchi, D. (2020). "DNA is not an ontologically distinctive developmental cause". Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 81: 101245. https://doi.org/h6n3
Voet, D. y Voet, J. (2010). Biochemistry (4th Edition). Wiley
Wang, J., Lutrell IV, J., Zhang, N., Khan, S., Shi, N., Wang, M., Kang, J-Q., Wang, Z. y Xu, D. (2016). “Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling”. En: Shen, B., Tang, H., Jiang, X. (eds). Advances in Experimental Medicine and Biology (vol. 939). Singapore: Springer. https://doi.org/h6n4
Waters, C. K. (2007). "Causes that Make a Difference". The Journal of Philosophy, 104(11): 551-579. https://doi.org/f3f94g
Waters, C. K. (2008). "How Practical Know‐How Contextualizes Theoretical Knowledge: Exporting Causal Knowledge from Laboratory to Nature". Philosophy of Science, 75(5): 707-719. https://doi.org/bpkqs4
Waters, C. K. (2019). “An epistemology of scientific practices”. Philos. Sci. 86(4): 585–611. https://doi.org/gmjm8s
Weber, M. (2005). Philosophy of Experimental Biology. Cambridge: Cambridge University Press.
Weber, M. (2006). "The Central Dogma as a Thesis of Causal Specificity". History and Philosophy of the Life Sciences, 28(4): 595-610.
Wimsatt, W. (1981). “Robustness. Reliability and Overdetermination”, En M. Brewer y B. Collins. (eds.), Scientific Inquiry and the Social Sciences (p. 124-163). San Francisco: Jossey-Bass.
Wimsatt, W. C. (1974). “Complexity and organization”. En K.F. Schaffner y R. S. Cohen (eds.). Proceedings of the 1972 meeting of the Philosophy of Science Association (p. 67–86.). Dordrecht: D. Reidel.
Winther, R.G. (2011), “Part-whole science”. Synthese, 178: 397–427. https://doi.org/dj83ks
Wlodawer, A., Minor, W., Dauter, Z. y Jaskolski, M. (2013). “Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination”. The FEBS Journal, 280(22): 5705-36. https://doi.org/f5hr29
Woodward, J. (2010). “Causation in biology: stability, specificity, and the choice of levels of explanation”. Biology & Philosophy, 25: 287–318. https://doi.org/b2wbmr
Wooley, J. C. y Ye, Y. (2007). “A Historical Perspective and Overview of Protein Structure Prediction”. En Xu, Y., Xu, D. y Liang, J. (eds.), Computational Methods for Protein Structure Prediction and Modeling. BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING. New York: Springer. https://doi.org/fgmwhw
Xu, D. y Xu, Y. (2004). “Protein databases on the internet”. Current Protocols in Molecular Biology. 68: 19.4.1-19.4.15. https://doi.org/ffj9h9
Xu, D. y Zhang, Y. (2012) “Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field”. Proteins, 80: 1715-1735. https://doi.org/h6n7
Zuppone, R. (2010). "El argumento del regreso del experimentador y la replicación de experimentos". Scientiae Studia, 8(2): 243-271. https://doi.org/fdkg2w
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Gabriel Vallejos-Baccelliere
This work is licensed under a Creative Commons Attribution 4.0 International License.
Regarding the copyright of the contributions (i.e. articles or others) published or sent to Culturas Científicas, it will be understood that the authors accept the following terms at the time of submitting:
-
The authors will retain the rights of the contributions they submit to Culturas Científicas.
-
The authors accept that their contribution is subject to the Creative Commons Attribution 4.0 International License (CC BY 4.0) once it is published.
This means that the published contribution may be shared and adapted—even commercially—as long as proper credit is given and no endorsement by the author (i.e. licensor) is implied.
-
Notwithstanding the foregoing, at the time of accepting their contribution, the authors grant its first publication exclusively to Culturas Científicas.
-
Once the contribution is accepted, the authors grant to Culturas Científicas the rights of reproduction and distribution of their article in all countries of the world for their exploitation in any medium, format or support.
-
The authors may adopt other non-exclusive license agreements for the contribution published by our journal (e.g. deposit in archives, publication in other journals, book compendiums or translation) committing to indicate that the original publication was made in Culturas Científicas or publishing the version that already has the identifiers of our journal.
We encourage the authors to spread their articles through the internet in sites designated for it in order to motivate their reading and discussion.