Aproveitamento de resíduos del milho (Zea mays) na indústria: Revisão bibliográfica
DOI:
https://doi.org/10.35588/rivar.v10i31.5980Palavras-chave:
agroindústria, ambiente, biomassa, gestão de recursos, reciclagemResumo
O uso de resíduos orgânicos é uma estratégia que tem ganhado impacto em favor do ambiente, em especial entre as empresas agroindustriais. Os resíduos procedentes da indústria alimentária contém componentes estructurais, como a lignocelulosa, que podem ser aproveitados em diversas áreas. Neste sentido, este trabalho é uma revisão sistemática qualitativa de investigações que reposam nas diversas bases de dados nas que se procure o aproveitamento dos resíduos de milho. Para maior especificidade na procura de informação utilizou-se o operador booleano AND e palavras-chave, priorizando as investigações desenvolvidas entre os anos 2018 e 2023. Mediante um análise bibliográfico foram identificadas oito áreas nas que se aproveitam os resíduos do milho: biorremediação, alimentação, energia, desbrochado de lignocelulosa, biopolímeros, caracterização e construção, em quanto a mayoria das investigações refere à biorremediação (30,58%). Além disso, dos resíduos aproveitados o que maior utilidade apresenta é o restolho (44,44%), seguido pelo uso de troncos (16,67%) e raque (16,67%). Em relação à agroindustria, o uso de resíduos do milho apresenta um futuro prometedor, com ênfase na produção de embalagens de papel, biopolímeros e aditivos alimentários.
Downloads
Referências
Amer, M.W., Aljariri Alhesan, J.S., Ibrahim, S., Qussay, G., Marshall, M. y Al-Ayed, O.S. (2021). Potential Use of Corn Leaf Waste for Biofuel Production in Jordan (Physio-chemical Study). Energy, 214, 118863. https://doi.org/10.1016/j.energy.2020.118863
Astudillo, S., Vera, L., Astudillo, J. y Castro, C. (2020). Evaluación del poder biosorbente de la hoja de maíz en la remoción de metales pesados. Afinidad: Revista de Química Teórica y Aplicada, 77(591), 182-188.
Campos Silva, J., Jayane Nunes Siqueira, A., Bezerra Maia, H. y Rachide Nunes, R. (2021). Vermicomposting Corn Waste under Cultural and Climatic Conditions of the Brazilian Backwoods. Bioresource Technology Reports, 15, 100730. https://doi.org/10.1016/j.biteb.2021.100730
Cardoso, J., Nava, D. y Guzmán, G. (2018). Sistema de almacenamiento de energía y el uso de biopolímeros electrolitos. Contactos, Revista de Educación en Ciencias e Ingeniería, 110, 61-67.
Cong, L., Tian, G., Luo, D., Ren, X. y Xiang, X. (2020). Hydrothermally Assisted Transformation of Corn Stalk Wastes into High-performance Hard Carbon Anode for Sodium-ion Batteries. Journal of Electroanalytical Chemistry, 871, 114249. https://doi.org/10.1016/j.jelechem.2020.114249
Espinosa, R.V., Soto, M., Garcia, M.V. y Naranjo, J.E. (2021). Challenges of Implementing Cleaner Production Strategies in the Food and Beverage Industry: Literature Review en M. V. García, F. Fernández-Peña y C. Gordón-Gallegos (Eds.), Advances and Applications in Computer Science, Electronics and Industrial Engineering. Advances in Intelligent Systems and Computing (Vol. 1307, pp. 121-133). Springer. https://doi.org/10.1007/978-981-33-4565-2_8
Gao, M., Zou, H., Tian, W., Shi, D., Chai, H., Gu, L., He, Q. y Tang, W.Z. (2021). Co-digestive Performance of Food Waste and Hydrothermal Pretreated Corn Cob. Science of The Total Environment, 768, 144448. https://doi.org/10.1016/j.scitotenv.2020.144448
García, J.S. (2022). Aprovechamiento y revalorización de un residuo proteico del maíz como estabilizante de productos alimentarios. [Tesis de doctorado]. Universidad de Sevilla.
Guin, P.J., Bhardwaj, Y.K. y Varshney, L. (2018). Radiation Grafting: A Voyage from Bio-waste Corn Husk to an Efficient Thermostable Adsorbent. Carbohydrate Polymers, 183, 151-164. https://doi.org/10.1016/j.carbpol.2017.11.101
Kamarudin, N.H., Harun, Z., Othman, M.H.D., Abdullahi, T., Syamsul Bahri, S., Yunos, M.Z. y Wan Salleh, W.N. (2020). Waste Environmental Sources of Metakaolin and Corn Cob Ash for Preparation and Characterisation of Green Ceramic Hollow Fibre Membrane (h-MCa) for oil-Water Separation. Ceramics International, 46(2), 1512-1525. https://doi.org/10.1016/j.ceramint.2019.09.118
Lahori, A.H., Guo, Z., Zhang, Z., Li, R., Mahar, A., Awasthi, M. K., Shen, F., Sial, T.A., Kumbhar, F., Wang, P. y Jiang, S. (2017). Use of Biochar as an Amendment for Remediation of Heavy Metal-Contaminated Soils: Prospects and Challenges. Pedosphere, 27(6), 991-1014. https://doi.org/10.1016/S1002-0160(17)60490-9
Laiño, A.S. (2021). Ensilaje de rastrojo de maíz asociado con diferentes niveles de urea y melaza para la alimentación de rumiantes. Caracterización y posicionamiento estratégico. [Tesis de doctorado]. Universidad de Córdoba.
Li, Y., Song, X., Xu, W., Duan, X., Shi, J. y Li, X. (2022). Preparation of Biomass Film from Waste Biomass Energy Corn Stalk under Carbon Neutralization Strategy. Materials Today Communications, 32, 104001. https://doi.org/10.1016/j.mtcomm.2022.104001
Liew, C.W. y Ramesh, S. (2015). Electrical, Structural, Thermal and Electrochemical Properties of Corn Starch-based Biopolymer Electrolytes. Carbohydrate Polymers, 124, 222-228. https://doi.org/10.1016/j.carbpol.2015.02.024
Linares Castañeda, A., Corzo Ríos, L.J., Bautista Ramírez, E. y Gómez, Y.M. (2021). Elaboración de un envase primario para alimentos a partir de residuos de maíz y piñón mexicano. TIP Revista Especializada en Ciencias Químico-Biológicas, 24(1), 1-15.
Liu, X., Li, C., He, R. y Yang, Q. (27-29 de mayo de 2011). The Study and Application of Corn Straw Organic Growing Substrate in Ornamental Nurseries en 2011 International Conference on New Technology of Agricultural (pp. 212-215). Zibo, China. https://doi.org/10.1109/ICAE.2011.5943786
Liu, Y., Lv, X., Bao, J., Xie, J., Tang, X., Che, J., Ma, Y. y Tong, J. (2019). Characterization of Silane Treated and Untreated Natural Cellulosic Fibre from Corn Stalk Waste as Potential Reinforcement in Polymer Composites. Carbohydrate Polymers, 218, 179-187. https://doi.org/10.1016/j.carbpol.2019.04.088
Luo, G., Wang, W., Xie, W., Tang, Y., Xu, Y. y Wang, K. (2022). Co-pyrolysis of Corn Stover and Waste Tire: Pyrolysis Behavior and Kinetic Study Based on Fraser-Suzuki Deconvolution Procedure. Journal of Analytical and Applied Pyrolysis, 168, 105743. https://doi.org/10.1016/j.jaap.2022.105743
Ma, D., Zhu, B., Cao, B., Wang, J. y Zhang, J. (2017). Fabrication of the Novel Hydrogel Based on Waste Corn Stalk for Removal of Methylene Blue Dye from Aqueous Solution. Applied Surface Science, 422, 944-952. https://doi.org/10.1016/j.apsusc.2017.06.072
Ma, Z., Yao, J., Wang, Y., Jia, J., Liu, F. y Liu, X. (2022). Polysaccharide-based Delivery System for Curcumin: Fabrication and Characterization of Carboxymethylated Corn Fiber Gum/Chitosan Biopolymer Particles. Food Hydrocolloids, 125, 107367. https://doi.org/10.1016/j.foodhyd.2021.107367
Nurhayati, A.Y., Hariadi, Y.C. y Hasanah, W. (2016). Endeavoring to Food Sustainability by Promoting Corn Cob and Rice Husk Briquetting to Fuel Energy for Small Scale Industries and Household Communities. Agriculture and Agricultural Science Procedia, 9, 386-395. https://doi.org/10.1016/j.aaspro.2016.02.154
Peña-Gómez, N., Panagopoulos, V., Kanellaki, M., Koutinas, A.A., Ruiz-Rico, M., Fernández-Segovia, I. y Barat, J.M. (2020). Non-thermal Treatment for the Stabilisation of Liquid Food Using a Tubular Cellulose Filter from Corn Stalks. Food Control, 112, 107164. https://doi.org/10.1016/j.foodcont.2020.107164
Ramírez, J.B.V. y García, J.N.A. (2021). Comportamiento mecánico del adoquín de hormigón adicionando residuos orgánicos del maíz. Dominio de las Ciencias, 7(5), 148-168.
Sharma, N., Sharma, P. y Parashar, A.K. (2022). Incorporation of Silica Fume and Waste Corn Cob Ash in Cement and Concrete for Sustainable Environment. Materials Today: Proceedings, 62, 4151-4155. https://doi.org/10.1016/j.matpr.2022.04.677
Srivastava, N., Singh, R., Mohammad, A., Pal, D.B., Ahmad, I., Alam, M.M., Mishra, P.K. y Gupta, V. K. (2022). Acid Tolerant Multicomponent Bacterial Enzymes Production Enhancement under the Influence of Corn Cob Waste Substrate. International Journal of Food Microbiology, 373, 109698. https://doi.org/10.1016/j.ijfoodmicro.2022.109698
Treviño, J., Hernández, M.T. y Caballero, R. (2011). Estudio del valor nutritivo de las hojas y tallo del maíz híbrido de tallo azucarado. Pastos: Revista de la Sociedad Española para el Estudio de los Pastos, 4(2), 286-292.
Vinueza Cisneros, B.S. (2020). Composición química de residuos agroindustriales del maíz (Zea mays) (Cáscara, Pelusa, Tusa y Panca) utilizados en la alimentación de rumiantes. [Tesis de pregrado]. Universidad Técnica Estatal de Quevedo.
Wang, H., Zhen, Z., Yao, S. y Li, S. (2022a). Synthesis of High Acid-resistant Iltramarine Blue Pigment through Coal Gangue, Industrial Zeolite Waste and Corn Straw Waste Recycling. Resources Chemicals and Materials, 1(2), 137-145. https://doi.org/10.1016/j.recm.2022.03.003
Wang, W., Yang, D., Mou, L., Wu, M., Wang, Y., Tan, F. y Yang, F. (2022b). Remodeling of Waste Corn Stalks into Renewable, Compressible and Hydrophobic Biomass-based Aerogel for Efficient and Selective Oil/organic Solvent Absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 645, 128940. https://doi.org/10.1016/j.colsurfa.2022.128940
Wilaipon, P., Fung, C.C. y Nayar, C. (28-31 de octubre de 2002). A Study on the Potential of Corn Cob Engine-generator for Electricity Generation in Thailand en 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM ’02. Proceedings. Beijing, China. https://doi.org/10.1109/TENCON.2002.1182722
Xia, X., Liang, Y., Lan, S., Li, X., Xie, Y. y Yuan, W. (2018). Production and Flocculating Properties of a Compound Biopolymer Flocculant from Corn Ethanol Wastewater. Bioresource Technology, 247, 924-929. https://doi.org/10.1016/j.biortech.2017.10.003
Xing, B.S., Cao, S., Han, Y., Wang, X. C., Wen, J. y Zhang, K. (2020). A Comparative Study of Artificial Cow and Sheep Rumen Fermentation of Corn Straw and Food Waste: Batch and Continuous Operation. Science of The Total Environment, 745, 140731. https://doi.org/10.1016/j.scitotenv.2020.140731
Xu, C., Zhao, J., Yang, W., He, L., Wei, W., Tan, X., Wang, J. y Lin, A. (2020). Evaluation of Biochar Pyrolyzed from Kitchen Waste, Corn Straw, and Peanut Hulls on Immobilization of Pb and Cd in Contaminated Soil. Environmental Pollution, 261, 114133. https://doi.org/10.1016/j.envpol.2020.114133
Xu, J., Cheng, W., Inglett, G. E., Wu, P., Kim, S., Liu, S. X. y Tseng, Y. (2010). Micro-heterogeneity of Cellulosic Fiber Biopolymer Prepared from Corn Hulls. LWT Food Science and Technology, 43(6), 977-981. https://doi.org/10.1016/j.lwt.2010.02.008
Yadav, M.P., Hicks, K.B., Johnston, D.B., Hotchkiss, A.T., Chau, H.K. y Hanah, K. (2016). Production of Bio-based Fiber Gums from the Waste Streams Resulting from the Commercial Processing of Corn Bran and Oat Hulls. Food Hydrocolloids, 53, 125-133. https://doi.org/10.1016/j.foodhyd.2015.02.017
You, Z., Pan, S.Y., Sun, N., Kim, H. y Chiang, P.C. (2019). Enhanced Corn-stover Fermentation for Biogas Production by NaOH Pretreatment with CaO Additive and Ultrasound. Journal of Cleaner Production, 238, 117813. https://doi.org/10.1016/j.jclepro.2019.117813
Zahoor, Wang, W., Tan, X., Guo, Y., Zhang, B., Chen, X., Yu, Q., Zhuang, X. y Yuan, Z. (2021). Mild Urea/KOH Pretreatment to Enhance Enzymatic Hydrolysis of Corn Stover with Liquid Waste Recovery for Plant Growth. Journal of Cleaner Production, 284, 125392. https://doi.org/10.1016/j.jclepro.2020.125392
Zambrano Mendoza, J.L. y Caviedes, M. (2022). Estado actual de la producción de maíz en Ecuador. INIAP-EESC.