Aportes de agricultura de precisión en la productividad sostenible: Una revisión sistemática
DOI:
https://doi.org/10.35588/5rmk9326Palabras clave:
agricultura de precisión, productividad, sostenibilidad, fertilización, recursosResumen
La agricultura de precisión ha generado nuevas formas de producción agrícola, debido principalmente a la escasez de los recursos esenciales para llevar a cabo la fertilización y el monitoreo de los campos. En ese sentido, se tuvo como objetivo determinar los aportes que brinda la agricultura de precisión a la productividad sostenible del sector agrícola. Para ello se tuvo al método de revisión sistemática PRISMA, la base de datos fue Web of Science y Scopus y el periodo de búsqueda fue del 2019 al 2024, obteniendo un total de 31 documentos relacionados al tema de interés, los cuales fueron analizados en el R–Studio, obteniendo una inercia de 1,44 en la agricultura de precisión y 0,99 en la productividad sostenible. Llegando a la conclusión que la agricultura de precisión brinda grandes aportes a la productividad sostenible de los cultivos, tales como la sostenibilidad de los recursos hídricos, la gestión de fertilizantes, estructura de redes de sensores y la precisión en el cultivo hidropónico.
Descargas
Referencias
Afzaal, H., Farooque, A.A., Abbas, F., Acharya, B. y Esau, T. (2020). Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island. Sustainability (Switzerland), 12(6), 2419. DOI https://doi.org/10.4067/10.3390/su12062419
Aliabad, F.A., Shojaei, S., Mortaz, M., Ferreira, C.S.S. y Kalantari, Z. (2022). Use of Landsat 8 and UAV Images to Assess Changes in Temperature and Evapotranspiration by Economic Trees following Foliar Spraying with Light-Reflecting Compounds. Remote Sensing, 14(23), 6153. DOI https://doi.org/10.4067/10.3390/rs14236153
Bristow, N., Rengaraj, S., Chadwick, D.R., Kettle, J. y Jones, D.L. (2022). Development of a LoRaWAN IoT Node with Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture. Sensors, 22(23), 9100. DOI https://doi.org/10.4067/10.3390/s22239100
Cota, D., Martins, J., Mamede, H. y Branco, F. (2023). BHiveSense: An Integrated Information System Architecture for Sustainable Remote Monitoring and Management of Apiaries Based on IoT and Microservices. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100110. DOI https://doi.org/10.4067/10.1016/j.joitmc.2023.100110
De Oliveira, H.F.E., de Moura Campos, H., Mesquita, M., Machado, R.L., Vale, L.S.R., Siqueira, A.P.S. y Ferrarezi, R.S. (2021). Horticultural Performance of Greenhouse Cherry Tomatoes Irrigated Automatically Based on Soil Moisture Sensor Readings. Water, 13(19), 2662. DOI https://doi.org/10.4067/10.3390/w13192662
Djaman, K., Mohammed, A.T. y Koudahe, K. (2023). Accuracy of Estimated Crop Evapotranspiration Using Locally Developed Crop Coefficients against Satellite-Derived Crop Evapotranspiration in a Semiarid Climate. Agronomy-Basel, 13(7), 1937. DOI https://doi.org/10.4067/10.3390/agronomy13071937
Dutta, M., Gupta, D., Sahu, S., Limkar, S., Singh, P., Mishra, A., Kumar, M. y Mutlu, R. (2023). Evaluation of Growth Responses of Lettuce and Energy Efficiency of the Substrate and Smart Hydroponics Cropping System. Sensors, 23(4), 1875. DOI https://doi.org/10.4067/10.3390/s23041875
Ed-Daoudi, R., Alaoui, A., Ettaki, B. y Zerouaoui, J. (2023). A Predictive Approach to Improving Agricultural Productivity in Morocco through Crop Recommendations. International Journal of Advanced Computer Science and Applications, 14(3), 199-205. DOI https://doi.org/10.4067/10.14569/IJACSA.2023.0140322
Hundal, G.S., Laux, C.M., Buckmaster, D., Sutton, M.J. y Langemeier, M. (2023). Exploring Barriers to the Adoption of Internet of Things-Based Precision Agriculture Practices. Agriculture, 13(1), 163. DOI https://doi.org/10.4067/10.3390/agriculture13010163
Kawamura, K., Asai, H., Yasuda, T., Khanthavong, P., Soisouvanh, P. y Phongchanmixay, S. (2020). Field Phenotyping of Plant height in an Upland Rice Field in Laos Using Low-Cost Small Unmanned Aerial Vehicles (UAVs). Plant production science, 23(4), 452-465. DOI https://doi.org/10.4067/10.1080/1343943X.2020.1766362
Kazlauskas, M., Bruciene, I., Savickas, D., Naujokiene, V., Buragiene, S., Steponavicius, D., Romaneckas, K. y Sarauskis, E. (2023). Life Cycle Assessment of Winter Wheat Production Using Precision and Conventional Seeding Technologies. Sustainability, 15(19), 14376. DOI https://doi.org/10.4067/10.3390/su151914376
Kho, E.P., Chua, S.N.D., Lim, S.F., Lau, L.C. y Gani, M.T.N. (2022). Development of Young Sago Palm Environmental Monitoring System with Wireless Sensor Networks. Computers and Electronics in Agriculture, 193, 106723. DOI https://doi.org/10.4067/10.1016/j.compag.2022.106723
Krevh, V., Groh, J., Filipovic, L., Gerke, H.H.H., Defterdarovic, J., Thompson, S., Sraka, M., Bogunovic, I., Kovac, Z., Robinson, N., Baumgartl, T. y Filipovic, V. (2023). Soil-Water Dynamics Investigation at Agricultural Hillslope with High-Precision Weighing Lysimeters and Soil-Water Collection Systems. Water, 15(13), 2398. DOI https://doi.org/10.4067/10.3390/w15132398
Li, C., Hunt, D., Koenig, K., Smukler, S. y Bittman, S. (2021). Integrated Farm Management Systems to Improve Nutrient Management Using Semi-Virtual Farmlets: Agronomic Responses. Environmental Research Communications, 3, 075009. DOI https://doi.org/10.4067/10.1088/2515-7620/ac13c6
Li, Z., Chen, Z., Cheng, Q., Duan, F., Sui, R., Huang, X. y Xu, H. (2022). UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat. Agronomy, 12(1), 202. DOI https://doi.org/10.4067/10.3390/agronomy12010202
Liang, X., Jin, X., Liu, J., Yin, Y., Gu, Z., Zhang, J. y Zhou, Y. (2023). Formation Mechanism and Sustainable Productivity Impacts of Non-Grain Croplands: Evidence from Sichuan Province, China. Land Degradation and Development, 34(4), 1120-1132. DOI https://doi.org/10.4067/10.1002/ldr.4520
Liu, Z., Bashir, R.N., Iqbal, S., Shahid, M.M.A., Tausif, M. y Umer, Q. (2022). Internet of Things (IoT) and Machine Learning Model of Plant Disease Prediction-Blister Blight for Tea Plant. IEEE Access, 10, 44934–44944. DOI https://doi.org/10.4067/10.1109/Access.2022.3169147
Lu, J., Wang, H., Miao, Y., Zhao, L., Zhao, G., Cao, Q. y Kusnierek, K. (2022). Developing an Active Canopy Sensor-Based Integrated Precision Rice Management System for Improving Grain Yield and Quality, Nitrogen Use Efficiency, and Lodging Resistance. Remote Sensing, 14(10), 2440. DOI https://doi.org/10.4067/10.3390/rs14102440
Neményi, M., Kovács, A.J., Oláh, J., Popp, J., Erdei, E., Harsányi, E., Ambrus, B., Teschner, G. y Nyéki, A. (2022). Challenges of Sustainable Agricultural Development with Special Regard to Internet of Things: Survey. Progress in Agricultural Engineering Sciences, 18(1), 95-114. DOI https://doi.org/10.4067/10.1556/446.2022.00053
Postolache, S., Sebastião, P., Viegas, V., Postolache, O. y Cercas, F. (2023). IoT-Based Systems for Soil Nutrients Assessment in Horticulture. Sensors, 23(1), 403. DOI https://doi.org/10.4067/10.3390/s23010403
Sánchez Millán, F., Ortiz, F.J., Mestre Ortuño, T.C., Frutos, A. y Martínez, V. (2023). Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors, 23(6), 3177. DOI https://doi.org/10.4067/10.3390/s23063177
Sarker, K.K., Hossain, A., Ibn Murad K.F., Biswas, S.K., Akter, F., Rannu, R.P., Moniruzzaman, M., Karim, N.N. y Timsina, J. (2019). Development and Evaluation of an Emitter with a Low-Pressure Drip-Irrigation System for Sustainable Eggplant Production. Agriengineering, 1(3), 376-390. DOI https://doi.org/10.4067/10.3390/agriengineering1030028
Schillaci, C., Tadiello, T., Acutis, M. y Perego, A. (2021). Reducing Topdressing N Fertilization with Variable Rates Does Not Reduce Maize Yield. Sustainability, 13(14), 8059. DOI https://doi.org/10.4067/10.3390/su13148059
Shah, T.M., Nasika, D.P.B. y Otterpohl, R. (2021). Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification. Agriculture-Basel, 11(3), 222. DOI https://doi.org/10.4067/10.3390/agriculture11030222
Shukla, B.K., Maurya, N. y Sharma, M. (2023). Advancements in Sensor-Based Technologies for Precision Agriculture: An Exploration of Interoperability, Analytics and Deployment Strategies. Engineering Proceedings, 58(1), 22. DOI https://doi.org/10.4067/10.3390/ecsa-10-16051
Singh, N., Ajaykumar, K., Dhruw, L.K. y Choudhury, B.U. (2023). Optimization of Irrigation Timing for Sprinkler Irrigation System Using Convolutional Neural Network-Based Mobile Application for Sustainable Agriculture. Smart Agricultural Technology, 5, 100305. DOI https://doi.org/10.4067/10.1016/j.atech.2023.100305
Terán-Chaves, C.A., Montejo-Nuñez, L., Cordero-Cordero, C. y Polo-Murcia, S.M. (2023). Water Productivity Indices of Onion (Allium cepa) under Drip Irrigation and Mulching in a Semi-Arid Tropical Region of Colombia. Horticulturae, 9(6), 632. DOI https://doi.org/10.4067/10.3390/horticulturae9060632
Thilakarathne, N.N., Bakar, M.S.A., Abas, P.E. y Yassin, H. (2023). Towards Making the Fields Talks: A Real-Time Cloud Enabled IoT Crop Management Platform for Smart Agriculture. Frontiers in Plant Science, 13. DOI https://doi.org/10.4067/10.3389/fpls.2022.1030168
Torres-Sánchez, J., Escola, A., De Castro A.I., López-Granados, F., Rosell-Polo, J.R., Sebe, F., Jiménez-Brenes, F.M., Sanz, R., Gregorio, E. y Pena, J.M. (2023). Mobile Terrestrial Laser Scanner vs. UAV Photogrammetry to Estimate Woody Crop Canopy Parameters-Part 2: Comparison for Different Crops and Training Systems. Computers and Electronics in Agriculture, 212, 108083. DOI https://doi.org/10.4067/10.1016/j.compag.2023.108083
Toscano, P., Cutini, M., Filisetti, A., Premoli, E., Porcu, M., Catalano, N., Bisaglia, C. y Brambilla, M. (2022). Workability Assessment of Different Stony Soils by Soil–Planter Interface Noise and Acceleration Measurement. AgriEngineering, 4(4), 1139-1152. DOI https://doi.org/10.4067/10.3390/agriengineering4040070
Trenz, J., Memic, E., Batchelor, W.D. y Graeff-Hoenninger, S. (2023). Generic Optimization Approach of Soil Hydraulic Parameters for Site-Specific Model Applications. Precision Agriculture, 25, 654-680. DOI https://doi.org/10.4067/10.1007/s11119-023-10087-9
Tseng, H.H., Yang, M.D., Saminathan, R., Yu-Chun, H., Yang, C.Y. y Wu, D.H. (2022). Rice Seedling Detection in UAV Images Using Transfer Learning and Machine Learning. Remote Sensing, 14(12), 2837. DOI https://doi.org/10.4067/10.3390/rs14122837
Tsiropoulos, Z., Skoubris, E., Fountas, S., Gravalos, I. y Gemtos, T. (2022). Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture-Basel, 12(7), 1044. DOI https://doi.org/10.4067/10.3390/agriculture12071044
Turnip, A., Pebriansyah, F.R., Simarmata, T., Sihombing, P. y Joelianto, E. (2023). Design of Smart Farming Communication and Web Interface Using MQTT and Node.js. Open Agriculture, 8(1), 20220159. DOI https://doi.org/10.4067/10.1515/opag-2022-0159
Visentin, F., Cremasco, S., Sozzi, M., Signorini, L., Signorini, M., Marinello, F. y Muradore, R. (2023). A Mixed-Autonomous Robotic Platform for Intra-Row and Inter-Row Weed Removal for Precision Agriculture. Computers and Electronics in Agriculture, 214, 108270. DOI https://doi.org/10.4067/10.1016/j.compag.2023.108270
Vogel, S., Gebbers, R., Oertel, M. y Kramer, E. (2019). Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. SENSORS, 19(20), 4593. DOI https://doi.org/10.4067/10.3390/s19204593
Waheed, H., Akram, W., Islam, S.U., Hadi, A., Boudjadar, J. y Zafar, N. (2023). A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning. Future Internet, 15(3), 86. DOI https://doi.org/10.4067/10.3390/fi15030086
Wakjira, K., Negera, T., Zacepins, A., Kviesis, A., Komasilovs, V., Fiedler, S., Kirchner, S., Hensel, O., Purnomo, D., Nawawi, M., Gratzer, K. y Brodschneider, R. (2021). Smart Apiculture Management Services for Developing Countries—The Case of SAMS Project in Ethiopia and Indonesia. PeerJ Computer Science, 7, e484. DOI https://doi.org/10.4067/10.7717/Peerj-CS.484
Yepes-Nuñez, J.J., Urrútia, G., Romero-García, M. y Alonso-Fernández, S. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799.
Zeraatpisheh, M., Bakhshandeh, E., Emadi, M., Li, T. y Xu, M. (2020). Integration of PCA and Fuzzy Clustering for Delineation of Soil Management Zones and Cost-Efficiency Analysis in a Citrus Plantation. Sustainability, 12(14), 1-17. DOI https://doi.org/10.4067/10.3390/su12145809
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 RIVAR

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.