El poder de distinguir: el caso de Relatividad General

Autores/as

DOI:

https://doi.org/10.35588/cc.v6d7929

Palabras clave:

Teorías marco, Teorías de interacción, Relatividad general, Gravedad cuántica, Clasificación de teorías

Resumen

En este artículo exploramos cuán poderosa es la distinción entre teorías estructurales y teorías mecanicistas mediante su uso en el análisis de la Relatividad General. Se ha propuesto que toda teoría científica o elemento teórico puede clasificarse en uno de sólo dos grupos, cada uno de ellos implica elementos ontológicos, epistémicos y funcionales distintivos. Siendo así, bastaría con identificar el grupo al que pertenece una teoría para conocer a priori sus alcances y limitaciones en estas áreas (ontológico, epistémico y funcional) sin necesidad de entrar en un análisis técnico detallado. Para mostrar el punto, usaremos como caso de estudio la Relatividad General, y previo a cualquier análisis técnico mostraremos que somos capaces de anticipar su contenido ontológico, epistémico y funcional, el que luego corroboraremos analizando en detalle ciertos elementos técnicos. Con esto, intentamos defender el uso de la distinción como una poderosa herramienta para el análisis científico y filosófico.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Acuña, P. (2016). Minkowski spacetime and lorentz invariance: The cart and the horse or two sides of a single coin? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 55:1–12.

Adler, S. L. (2003). Why decoherence has not solved the measurement problem: a response to pw anderson. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 34(1):135– 142.

Aronson, J. L. (1971). On the grammar of cause. Synthese, 22(3-4):414–430.

Bacciagaluppi, G. (2020). The Role of Decoherence in Quantum Mechanics. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2020 edition.

Balashov, Y. and Janssen, M. (2003). Presentism and relativity. The British journal for the philosophy of science, 54(2):327–346.

Belot, G. (1998). Understanding electromagnetism. The British Journal for the Philosophy of Science, 49(4):531–555.

Benitez, F. (2019). Selective realism and the framework/interaction distinction: A taxonomy of fundamental physical theories. Foundations of Physics, 49(7):700–716.

Blanchard, P., Giulini, D., Joos, E., Kiefer, C., and Stamatescu, I.-O. (2000). Decoherence: Theoretical, experimental, and conceptual problems: Proceedings of a workshop held at bielefeld germany, 10–14 november 1998.

Bonse, U. and Wroblewski, T. (1983). Measurement of neutron quantum interference in noninertial frames. Physical Review Letters, 51(16):1401.

Bose, S., Mazumdar, A., Morley, G. W., Ulbricht, H., Toros, M., Paternostro, M., Geraci, A. A., Barker, P. F., Kim, M., and Milburn, G. (2017). Spin entanglement witness for quantum gravity. Physical review letters, 119(24):240401.

Brown, H. R. (2005). Physical Relativity: Space-Time Structure From a Dynamical Perspective. Oxford University Press UK.

Brown, H. R. and Holland, P. (2004). Dynamical versus variational symmetries: understanding noether’s first theorem. Molecular Physics, Vol. 102, No. 11-12, 1133-1139 (2004).

Brown, H. R. and Pooley, O. (2001). The origin of the spacetime metric: Bells lorentzian pedagogyand its significance in general relativity. Physics meets philosophy at the Planck scale, pages 256–272.

Brown, H. R. and Pooley, O. (2006). Minkowski space-time: a glorious nonentity. Philosophy and Foundations of Physics, 1:67–89.

Brown, H. R. and Timpson, C. G. (2006). Why special relativity should not be a template for a fundamental reformulation of quantum mechanics. In Physical theory and its interpretation, pages 29–42. Springer.

Brown, H. R. and Uffink, J. (2001). The origins of time-asymmetry in thermodynamics: The minus first law. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 32(4):525–538.

Bub, J. (2000). Quantum mechanics as a principle theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 31(1):75–94.

Bub, J. (2005). Quantum mechanics is about quantum information. Foundations of Physics, 35(4):541–560.

Bub, J. and Demopoulos, W. (1974). The interpretation of quantum mechanics. In Logical and Epistemological Studies in Contemporary Physics, pages 92–122. Springer.

Camp, W. V. (2011). On kinematic versus dynamic approaches to special relativity. Philosophy of Science, 78(5):1097–1107.

Carroll, S. (2014). Spacetime and Geometry: Pearson New International Edition. Pearson Education Limited.

Christodoulou, M., Di Biagio, A., Howl, R., and Rovelli, C. (2022). Gravity entanglement, quantum reference systems, degrees of freedom. arXiv eprints, page arXiv:2207.03138.

Christodoulou, M. and Rovelli, C. (2019). On the possibility of laboratory evidence for quantum superposition of geometries. Physics Letters B, 792:64–68.

Clifton, R., Bub, J., and Halvorson, H. (2003). Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics, 33(11):1561–1591.

Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Observation of gravitationally induced quantum interference. Physical Review Letters, 34(23):1472.

DeWitt, C. M. and Rickles, D. (2011). The role of gravitation in physics: Report from the 1957 Chapel Hill Conference, volume 5. epubli.

DiSalle, R. (2006). Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge University Press.

Dowe, P. (2000). Physical Causation. Cambridge Studies in Probability, Induction and Decision Theory. Cambridge University Press.

Earman, J. and Norton, J. (1987). What price spacetime substantivalism? The hole story. The British journal for the philosophy of science, 38(4):515–525.

Einstein, A. (1919). What is the theory of relativity? Ideas and Opinions (1982), pages 227–32.

Fair, D. (1979). Causation and the flow of energy. Erkenntnis, 14(3):219–250.

Felline, L. (2011). Scientific explanation between principle and constructive theories. Philosophy of Science, 78(5):989–1000.

Felline, L. (2018). Quantum theory is not only about information. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.

Feynman, R. P., Morinigo, F. B., and Wagner, W. G. (1995). Feynman lectures on gravitation. Reading, MA: Addison-Wesley,— c1995, edited by Hatfield, Brian.

Flores, F. (1999). Einstein’s theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13(2):123–134.

Frisch, M. (2011). Principle or constructive relativity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(3):176–183.

Geroch, R. and Jang, P. S. (1975). Motion of a body in general relativity. Journal of Mathematical Physics, 16(1):65–67.

Goenner, H. F. (1984). Theories of gravitation with nonminimal coupling of matter and the gravitational field. Foundations of physics, 14(9):865–881.

Healey, R. (1997). Nonlocality and the aharonov-bohm effect. Philosophy of Science, 64(1):18–41.

Hoefer, C. (1996). The metaphysics of space-time substantivalism. The Journal of Philosophy, 93(1):5–27.

Hojman, S. A. (1992). A new conservation law constructed without using either lagrangians or hamiltonians. Journal of Physics A: Mathematical and General, 25(7):L291.

Krisnanda, T., Tham, G. Y., Paternostro, M., and Paterek, T. (2020). Observable quantum entanglement due to gravity. npj Quantum Information, 6(1):1–6.

Lange, M. (2007). Laws and meta-laws of nature: Conservation laws and symmetries. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(3):457 – 481.

Lange, M. (2011). Conservation laws in scientific explanations: Constraints or coincidences? Philosophy of Science, 78(3):333–352.

Lange, M. (2014). Did einstein really believe that principle theories are explanatorily powerless? Perspectives on Science, 22(4):449–463.

Lavis, D. A. (2005). Boltzmann and gibbs: An attempted reconciliation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36(2):245–273.

Lehmkuhl, D. (2008). Is spacetime a gravitational field? Philosophy and Foundations of Physics, 4:83–110.

Lehmkuhl, D. (2014). Why einstein did not believe that general relativity geometrizes gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 46:316–326.

Lehmkuhl, D. (2017). Literal versus careful interpretations of scientific theories: The vacuum approach to the problem of motion in general relativity. Philosophy of Science, 84(5):1202–1214.

Lehmkuhl, D. (2021). The equivalence principle (s). In The Routledge Companion to Philosophy of Physics, pages 125–144. Routledge.

Macdonald, A. (2001). Einsteins hole argument. American Journal of Physics, 69(2):223–225.

Malament, D. B. (2012). A remark about the geodesic principle in general relativity. In Analysis and Interpretation in the Exact Sciences, pages 245–252. Springer.

Maltrana, D., Herrera, M., & Benitez, F. (2022). Einstein’s theory of theories and mechanicism. International Studies in the Philosophy of Science, 35(2), 153-170.

Marletto, C. and Vedral, V. (2017). Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Physical review letters, 119(24):240402.

Marletto, C. and Vedral, V. (2018). When can gravity path-entangle two spatially superposed masses? Physical Review D, 98(4):046001.

Marletto, C. and Vedral, V. (2021). Sagnac interferometer and the quantum nature of gravity. Journal of Physics Communications, 5(5):051001.

Marshman, R. J., Mazumdar, A., and Bose, S. (2019). Locality & entanglement in table-top testing of the quantum nature of linearized gravity. arXiv preprint arXiv:1907.01568.

Maudlin, T. (1998). Healey on the aharonov-bohm effect. Philosophy of Science, 65(2):361-368.

Mukohyama, S. and Uzan, J.-P. (2013). From configuration to dynamics: Emergence of lorentz signature in classical field theory. Physical Review D, 87(6):065020.

Norton, J. (1988). The hole argument. In PSA: Proceedings of the biennial meeting of the Philosophy of Science Association, volume 1988, pages 56–64. Philosophy of Science Association.

Overhauser, A. and Colella, R. (1974). Experimental test of gravitationally induced quantum interference. Physical Review Letters, 33(20):1237.

Øyvind, G. and Hervik, S. (2007). Einstein’s General Theory of Relativity: With Modern Applications in Cosmology. Springer.

Plotnitsky, A. (2015). A matter of principle: The principles of quantum theory, diracs equation, and quantum information. Foundations of Physics, 45(10):1222–1268.

Price, H. (1996). Time’s arrow & Archimedes’ point: new directions for the physics of time. Oxford University Press, USA.

Read, J., Brown, H. R., and Lehmkuhl, D. (2018). Two miracles of general relativity. Studies in history and philosophy of science Part B: Studies in history and philosophy of modern physics, 64:14–25.

Romero-Maltrana, D. (2015). Symmetries as by-products of conserved quantities. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52:358–368.

Romero-Maltrana, D., Benitez, F., and Soto, C. (2018). A proposal for a coherent ontology of fundamental entities. Foundations of Science, 23(4):705–717.

Ryder, L. (2006). Symmetries and conservation laws. In in Chief: JeanPierre Franoise, E., Naber, G. L., , and Tsun, T. S., editors, Encyclopedia of Mathematical Physics, pages 166 – 172. Academic Press, Oxford.

Schaffner, K. F. (1969). Theories and explanations in biology. Journal of the History of Biology, 2(1):19–33.

Schutz, B. (2009). A first course in general relativity. Cambridge university press.

Smith, S. R. (2008). Symmetries and the explanation of conservation laws in the light of the inverse problem in lagrangian mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39(2):325 – 345

Smolin, L. (2017). Four principles for quantum gravity. In Gravity and the Quantum, pages 427–450. Springer.

Sus, A. (2014). On the explanation of inertia. Journal for General Philosophy of Science, 45:293–315.

Tamir, M. (2012). Proving the principle: Taking geodesic dynamics too seriously in einstein’s theory.

Tino, G., Cacciapuoti, L., Capozziello, S., Lambiase, G., and Sorrentino, F. (2020). Precision gravity tests and the einstein equivalence principle. Progress in Particle and Nuclear Physics, 112:103772.

Torretti, R. (2000). Relatividad y espaciotiempo. RIL editores.

Van Camp, W. (2011). Principle theories, constructive theories, and explanation in modern physics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(1):23–31.

Van Fraasen, B. (1989). Laws and Symmetry. Clarendon paperbacks. Oxford University Press.

Wald, R. M. (1984). General relativity(book). Chicago, University of Chicago Press, 1984, 504 p.

Wallace, D. (2010). Decoherence and ontology: Or: How i learned to stop worrying and love fapp. Many worlds, pages 53–72.

Wallace, D. and Timpson, C. G. (2010). Quantum mechanics on spacetime i: Spacetime state realism. The British journal for the philosophy of science, 61(4):697–727.

Weatherall, J. (2011). On the status of the geodesic principle in newtonian and relativistic physics. Studies in History and Philosophy of Modern Physics, 42..

Weatherall, J. O. (2017). Inertial motion, explanation, and the foundations of classical spacetime theories. In Towards a theory of spacetime theories, pages 13–42. Springer.

Weatherall, J. O. (2019). Conservation, inertia, and spacetime geometry. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 67:144–159.

Will, C. M. (2006). The confrontation between general relativity and experiment. Living reviews in relativity, 9(1):3.

Descargas

Enviado

2026-01-20

Publicado

2026-01-20

Número

Sección

Dossier Filosofía y Fundamentos de la Física

Cómo citar

El poder de distinguir: el caso de Relatividad General. (2026). Culturas Científicas, 6(1). https://doi.org/10.35588/cc.v6d7929

Artículos similares

21-30 de 50

También puede Iniciar una búsqueda de similitud avanzada para este artículo.