Una revisión de la condicionalización bayesiana

propuesta de extensión bayesiana sobre la base de la reconstrucción racional y la condicionalización épsilon

Autores/as

DOI:

https://doi.org/10.35588/cc.v2i1.4903

Palabras clave:

Probabilidad Subjetiva, Grados de Creencia, Dogmatismo Bayesiano, Evidencia Antigua, Nuevas Teorías

Resumen

La epistemología bayesiana tiene como concepto capital la condicionalización simple. Para comprender de buena forma cómo opera esta regla, se debe dar cuenta de la concepción subjetiva de la probabilidad. Sobre la base de lo anterior es posible esclarecer alcances y límites de la condicionalización simple. En general, cuando esta regla enfrenta una dificultad se hacen esfuerzos por resolver dicha particular cuestión, pero no es usual encontrar propuestas unificadas con la intención de resolver varias de las complicaciones subyacentes al bayesianismo ortodoxo. Por lo mismo, el propósito de esta investigación es justamente proponer aquello: un marco bayesiano ampliado que tendrá por objeto solucionar más de una cuestión particular. Más específicamente, el problema de la incorregibilidad, el problema del surgimiento del cero, el problema de la evidencia antigua y el problema de las teorías nuevas. Lo anterior se logrará adicionando al bayesianismo ortodoxo dos cuestiones, a saber, la condicionalización épsilon y una reconstrucción racional.  

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Armendt, B. (1980). “Is there a Dutch book argument for probability kinematics?” Philosophy of Science 47(4): 583-588. doi: https://doi.org/bjrwpm

Athreya, K. B. y Lahiri, S. N. (2006). Measure Theory and Probability Theory. Nueva York: Springer Science & Business Media.

Belot, G. (2013). “Bayesian orgulity”. Philosophy of Science, 80(4): 483-503. doi: https://doi.org/gpkp

Bernardo, J.M. (1997). Bruno de Finetti en la Estadística Contemporánea. José-Miguel Bernardo (página personal, Universitat de València). URL: https://www.uv.es/~bernardo/publications.html. Consultado el 13 de julio del 2020.

Bhattacharyya, G., y Johnson, R. (1977). Statistical Concepts and Methods. USA: John Wiley & Sons.

Bird, A. (2018). Inference to the Best Explanation, Bayesianism, and Knowledge. En McCain, K. y Poston, T. (2018) Best Explanations: New Essays on Inference to the Best Explanation. Oxford: Oxford University Press. doi: https://doi.org/gprb

Curd, M., y Cover, J. A. (1998). Philosophy of science: The central issues. New York: W.W. Norton & Company.

de Finetti, B. (1974). Theory of Probability: A Critical Introductory Treatment. London: John Wiley and Sons. doi: https://doi.org/gprd

DeBrota, J. B., Fuchs, C. A., Pienaar, J. L. y Stacey, B. C. (2020). “The Born Rule as Dutch-Book Coherence (and only a little more)”. arXiv preprint arXiv:2012.14397. URL: https://arxiv.org/abs/2012.14397

Earman, J. (1992). Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory. Cambridge, ma: MIT Press.

Easwaran, K. (2011). “Bayesianism I: Introduction and arguments in favor”. Philosophy Compass, 6(5): 312-320. doi: https://doi.org/cwv9c9

Edwards, A. W. (1984). Likelihood. Cambridge science classics. Cambridge University Press.

Elga, A. (2016).” Bayesian humility.” Philosophy of Science, 83(3): 305-323. doi: https://doi.org/gg432b

Friedman, R. D. (1997). “Towards a (Bayesian) convergence?” The International Journal of Evidence & Proof, 1(special): 348-360. doi: https://doi.org/gprg

Garola, C. (2018). “An Epistemic Interpretation of Quantum Probability via Contextuality”.

Foundations of Science, 25(1), 105-120. doi: https://doi.org/gprh

Gillies, D. (2000). Philosophical theories of probability. USA. Psychology Press.

Glymour, C. (1980). Theory and Evidence. Princeton, New Jersey: Princeton University Press.

Grünwald, P. (2012). The safe bayesian. En International Conference on Algorithmic Learning Theory (pp. 169-183). Berlin: Springer Heidelberg.

Hacking, I. (1972). “Likelihood”. The British Journal for the Philosophy of Science, 23(2): 132-137. doi: https://doi.org/dn48vp

Hacking, I. (2006). The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference. Cambridge University Press. doi: https://doi.org/gprk

Hájek, A. (Fall 2019). Interpretations of Probability. The Stanford Encyclopedia of Philosophy, Edward Zalta (ed.): URL: https://plato.stanford.edu/archives/fall2019/entries/probability-interpret/

Hájek, A. y Hartmann, S. (2010). Bayesian epistemology. Oxford: Oxford University Press Hájek, A. y Lin, H. (2017). “A tale of two epistemologies?”. Res Philosophica, 94(2): 207-232.

Hansson, S. O. (Winter 2017). Logic of Belief Revision. The Stanford Encyclopedia of Philosophy, Edward Zalta (ed.). URL: https://plato.stanford.edu/archives/win2017/entries/logic-belief- revision/

Hartmann, S. y Fitelson, B. (2015). “A new Garber-style solution to the problem of old evidence.”

Philosophy of Science, 82(4): 712-717. doi: https://doi.org/gprn

Hawthorne, J. (1994, January). “On the nature of Bayesian convergence”. En PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (Vol. 1994, No. 1, pp. 241-249). Philosophy of Science Association. doi: https://doi.org/gprp

Hoefer, C. (2012). “Calibration: Being in Tune with Frequencies.” Dialéctica, 66(3),435-452. doi: https://doi.org/gprq

Howson, C. (1991). “The 'old evidence' problem”. The British Journal for the Philosophy of Science, 42(4): 547-555. doi: https://doi.org/bk6kb2

Howson, C. y Urbach, P. (2006). Scientific reasoning: the Bayesian approach. Open Court Publishing.

Huber, F. y Schmidt-Petri, C. (2008). Degrees of Belief. Springer Science & Business Media. doi: https://doi.org/cwqwh6

Huttegger, S. M. (2015). “Bayesian convergence to the truth and the metaphysics of possible worlds”.

Philosophy of Science, 82(4): 587-601. doi: https://doi.org/gprr

Iseda, T. (1999). “Use-Novelty, Severity, and a Systematic Neglect of Relevant Alternatives”.

Philosophy of Science, 66: 403-413. doi: https://doi.org/d5v9wb

Jeffrey, R. (2002). “Petrus Hispanus Lectures: I. "After Logical Empiricism" II. "Radical Probabilism"”. En Works by and about Richard Jeffrey (página personal, Universidad de Princeton). URL: http://www.princeton.edu/~bayesway/. Consultado el 12 de mayo del 2020.

Joyce, J. M. (2011). “The devolepment of subjective Bayesianism”. En Gabbay, M. y Hartmann, S. (eds.) Handbook of the History of Logic (Vol. 10, pp. 415-475). USA: North-Holland.

Khrennikov, A. (2016). “Quantum Bayesianism as the basis of general theory of decision-making.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374(2068) doi: https://doi.org/f3rnrj

Koertge, N. (1978). “Towards a new theory of scientific inquiry”. En Cohen, R. Davidson, S , Nuchelmans, G., Salmon,W. (1974) Progress and rationality in science (pp. 253-278). Holland: Reidel Publishing Company. doi: https://doi.org/d2swcr

Lange, M. (1999). “Calibration and the Epistemological Role of Bayesian Conditionalization.” The Journal of Philosophy, 96(6): 294-324. doi: https://doi.org/bzw33s

Levi, I. (1967). Probability Kinematics. The British Journal for the Philosophy of Science, 18 (3): 197–209. doi: https://doi.org/b3k2t5

Lewis D. (1976). “Probabilities of Conditionals and Conditional Probabilities”. En Harper W.L., Stalnaker R., Pearce G. (eds) IFS. The University of Western Ontario Series in Philosophy of Science (A Series of Books in Philosophy of Science, Methodology, Epistemology, Logic, History of Science, and Related Fields), vol 15. Dordrecht: Springer. doi: https://doi.org/gprt

Lewis, D. (1981). “Causal Decision Theory”. Australasian Journal of Philosophy, 59(1): 5–30. doi: https://doi.org/bs3w2t

Parrott, M. (2014). “Bayesian models, delusional beliefs, and epistemic possibilities.” The British Journal for the Philosophy of Science, 67(1): 271-296. doi: https://doi.org/f3r4vz

Press, S. J. (2009). Subjective and Objective Bayesian Statistics: Principles, Models, and Applications. New Jersey: John Wiley & Sons.

Raidl, E. (2020). “Open-Minded Orthodox Bayesianism by Epsilon-Conditionalization.” The British Journal for the Philosophy of Science, 71(1): 139–176. doi: https://doi.org/gprv

Regazzini, E. (2013). The origins of de Finetti’s critique of countable additivity. En Jones,G, Shen, X. (2013) Advances in modern statistical theory and applications: a Festschrift in honor of Morris

L. Eaton (pp. 63-82). Institute of Mathematical Statistics.doi: https://doi.org/gprw Savage, L. J. (1954). The Foundations of Statistics. New York: John Wiley and Sons

Shaffer, M. J. (2008). “Bayesianism, convergence and social epistemology.” Episteme,5(2): 203-219. doi: https://doi.org/bskckz

Sprenger, J. (2015). “A novel solution to the problem of old evidence.” Philosophy of Science, 82(3): 383-401. doi: https://doi.org/gprx

Sprenger, J., y Hartmann, S. (2019). Bayesian philosophy of science. Oxford University Press. doi: https://doi.org/gprz

Strevens, M. (2006). The Bayesian Approach to the Philosophy of Science. En D. M. Borchert (ed.),

Encyclopedia of Philosophy, second edition. Macmillan Reference (pp. 495-502.).

Suzuki, S. (2005). “The old evidence problem and AGM theory.” Annals of the Japan Association for Philosophy of Science, 13(2):105-126. doi: https://doi.org/gpr2

Talbott, W. (Winter 2016). "Bayesian Epistemology". The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.). URL: https://plato.stanford.edu/archives/win2016/entries/epistemology- bayesian/

Teller, P. (1973). “Conditionalization and observation”. Synthese, 26(2): 218-258. doi: https://doi.org/dt3n5j

Tesic, M., Eva, B., & Hartmann, S. (2017). Confirmation by explanation: A Bayesian justification of IBE. Open Access LMU. URL: https://epub.ub.uni-muenchen.de/41934/. doi: 10.5282/ubm/epub.41934

Torretti, R. (2003). “El concepto de probabilidad”. Diálogos, 38(81): 407-448.

Trpin, B. (2020). “Jeffrey conditionalization: proceed with caution”. Philosophical Studies. 177(10): 2985-3012. doi: https://doi.org/ghc9dh

van Fraassen, B. C. (1983). “Calibration: A Frequency Justification”. En Cohen, R. y Laudan, R. (eds), (1983), Physics, Philosophy and Psychoanalysis. Dordrecht: Springer.

Vineberg, S. (Spring 2016). "Dutch Book Arguments". The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.), URL: https://plato.stanford.edu/archives/spr2016/entries/dutch-book/

Weintraub, R. (1993). “Fallibilism and rational belief”. The British journal for the philosophy of science, 44(2): 251-261. doi: https://doi.org/c26twh

Wenmackers, S., & Romeijn, J. W. (2016). “New theory about old evidence”. Synthese, 193(4):1225- 1250. doi: https://doi.org/gfjw5r

Descargas

Publicado

2021-07-31

Número

Sección

Artículos

Cómo citar

Una revisión de la condicionalización bayesiana: propuesta de extensión bayesiana sobre la base de la reconstrucción racional y la condicionalización épsilon. (2021). Culturas Científicas, 2(1), 24-54. https://doi.org/10.35588/cc.v2i1.4903