Inteligência artificial na agricultura de precisão: tendências e direções futuras

Autores

DOI:

https://doi.org/10.35588/mwfneb13

Palavras-chave:

Agricultura de precisão, inteligência artificial, Sustentabilidade agrícola, adoção de tecnologia

Resumo

A demanda pela produção agrícola global levou à busca de diferentes ferramentas que contribuem para o gerenciamento ideal dos recursos. Esta pesquisa apresenta um mapeamento bibliométrico do uso da inteligência artificial na agricultura de precisão por meio da análise de 479 artigos publicados entre 2019 e 2024 nas bases de dados Scopus e Web of Science, permitindo identificar uma maior produção científica em países com forte investimento tecnológico. A IA revolucionou a AP por meio do uso de sensores, aprendizado de máquina, robótica e análise preditiva, melhorando a produtividade, reduzindo custos e mitigando os impactos ambientais, o que possibilitou o desenvolvimento de linhas de pesquisa que incluem monitoramento de culturas, detecção precoce de doenças, irrigação inteligente e agricultura sustentável. No entanto, a adoção enfrenta barreiras, como a exclusão digital, os altos custos iniciais e o treinamento técnico limitado nas áreas rurais. Portanto, se a previsão é de uma agricultura mais eficiente, resiliente e inclusiva, é necessária uma implementação estratégica, gradual e específica ao contexto.

Downloads

Os dados de download ainda não estão disponíveis.

Biografias do Autor

  • Oscar Fabian Patiño Perdomo, Universidad de la Amazonia e Centro de Investigación, Innovación y Desarrollo para la Sustentabilidad

    N/A

  • Víctor Julio Balanta Martínez, Universidad de la Amazonia

    N/A

  • Wilmer Arley Patiño Perdomo, Universidad de la Amazonia

    N/A

  • Jesús Emilio Pinto Lopera, Universidad de la Amazonia

    N/A

  • Paula Andrea Sánchez Orozco, Universidad de la Amazonia

    N/A

Referências

Adereti, D., McMaine, J., y Malik, A. (2024). Understanding barriers to smart farming in small-scale systems. Journal of Rural Studies, 101, 342–354.

Aria, M., y Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Banco Mundial. (2023). Digital Agriculture: Farmers in the Driver’s Seat.

Bock, C. H., Barbedo, J. G. A., Del Ponte, E. M., y Mahlein, A.-K. (2020). From visual estimates to fully automated sensor-based assessments of plant diseases. Phytopathology Research, 2, 1–9. https://doi.org/10.1186/s42483-020-00049-8

Bostanova, P. I., Palisat, I., y Koicheva, V. (2024). The economic impact of precision farming on sustainable agricultural development. Ekonomika i Upravlenie: Problemy, Resheniya.

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377. https://doi.org/10.1002/asi.20317

Chen, Z., Liu, X., y Zhang, Y. (2024). Blockchain in agriculture: Applications and challenges. Computers and Electronics in Agriculture, 210, 107745.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., y Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

FAO y Banco Mundial. (2021). Joint report on digital agriculture and climate resilience.

FAO. (2023). Innovation in agriculture: A key driver for food security and sustainability.

Ferreira, P., Loures, A., Castanho, R., Chamizo, A., Loures, L., y Panagopoulos, T. (2020). Assessing the effectiveness of precision agriculture management systems in Mediterranean small farms. Sustainability.

Fountas, S., Mylonas, N., y Gemtos, T. A. (2020). Smart farming and sustainability. Agronomy, 10(4), 637.

Goel, R., Yadav, C., Vishnoi, S., y Rastogi, R. (2021). Smart agriculture: Urgent need of the day in developing countries. Sustainable Computing: Informatics and Systems, 30, 100512. https://doi.org/10.1016/j.suscom.2021.100512

Gyarmati, G., y Mizik, T. (2020). The present and future of the precision agriculture. IEEE 15th International Conference of System of Systems Engineering (SoSE).

Hernández S., R., & Mendoza, C. (2020). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta.

Huo, D., Malik, A., Ravana, S., Rahman, A., y Ahmedy, I. (2024). Mapping smart farming: Addressing agricultural sustainability through big data and AI. Renewable y Sustainable Energy Reviews, 186, 113858. https://doi.org/10.1016/j.rser.2023.113858

Keswani, B., Mohapatra, A., Mohanty, A., Khanna, A., y Rodrigues, J. J. P. C. (2019). Adapting weather conditions-based IoT-enabled smart irrigation in agriculture. Neural Computing and Applications, 31, 1401–1417. https://doi.org/10.1007/s00521-018-3737-1

Kim, M.-Y., y Lee, K. H. (2022). Electrochemical sensors for sustainable precision agriculture—A review. Frontiers in Chemistry.

Lowenberg-DeBoer, J., y Erickson, B. (2019). Precision agriculture technology adoption in the US. Journal of Agricultural and Applied Economics, 51(1), 1–16.

Majumder, K., Phadikar, S., y Bhakta, I. (2019). State-of-the-art technologies in precision agriculture: A systematic review. Journal of the Science of Food and Agriculture, 99(11), 4878–4888. https://doi.org/10.1002/jsfa.9740

Malik, A., y Wang, T. (2024). Smart farming adoption: Barriers and enablers in emerging economies. Journal of Cleaner Production, 402, 136978.

Neményi, M., y Nyéki, A. (2022). Crop yield prediction in precision agriculture. Agronomy, 12(10), 1–15.

Padhiary, M., y Hoque, A. (2024). Automation and AI in precision agriculture: Innovations for enhanced crop management and sustainability. Asian Journal of Research in Computer Science, 20(10), 1–20.

Patel, K. K., Kumar, R., y Singh, D. (2024). A review on precision agriculture: An evolution and prospect for the future. International Journal of Plant y Soil Science.

Prakash, A., Bhambota, S., Kumar, S., y Sharma, A. (2024). Investigations of precision agriculture technologies with application to developing countries. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-04000-2

Rodrigues, J. J. P. C., y Mohapatra, A. (2022). Wireless sensor networks for agriculture: A comprehensive review. Sensors, 22(4), 1432.

Rozenstein, O., Cohen, Y., Alchanatis, V., y Behrendt, K. (2024). Data-driven agriculture and sustainable farming using machine learning and remote sensing. Precision Agriculture, 25, 233–249. https://doi.org/10.1007/s11119-023-10061-5

Rutter, S. M., y Rozenstein, O. (2024). Livestock monitoring with AI and sensors: State of the art. Animals, 14(2), 230.

Sadowski, A., Wiśniewski, J., y Marciniak, M. (2024). The role of precision agriculture technologies in enhancing sustainable agriculture. Sustainability.

Stock, R., Ogunyiola, A., y Gardezi, M. (2024). Precision agriculture and the future of agrarian labor in the US food system. Agriculture and Human Values, 41(3), 1–15.

Stumpe, C., Leukel, J., y Zimpel, T. (2024). Prediction of pasture yield using machine learning and remote sensing technologies. Precision Agriculture, 25, 150–169. https://doi.org/10.1007/s11119-023-10079-9

Ubina, N. A., y Cheng, S. (2022). A review of unmanned system technologies with applications in precision agriculture. Drones, 6(1), 12. https://doi.org/10.3390/drones6010012

Van Eck, N. J., y Waltman, L. (2014). Visualizing bibliometric networks. En Y. Ding, R. Rousseau, y D. Wolfram (Eds.), Measuring scholarly impact (pp. 285–320). Springer. https://doi.org/10.1007/978-3-319-10377-8_13

Vasconez, J. P., Delpiano, J., Vougioukas, S., y Auat Cheein, F. A. (2020). Comparison of convolutional neural networks in agricultural classification tasks. Computers and Electronics in Agriculture, 175, 105348. https://doi.org/10.1016/j.compag.2020.105348

Verrelst, J., Rivera-Caicedo, J. P., y Moreno, J. (2021). Remote sensing of vegetation traits using machine learning. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 56–68.

Yadav, C., Goel, R., y Rastogi, R. (2022). Edge computing in agriculture: Opportunities and challenges. Future Generation Computer Systems, 136, 252–264.

Yang, Y., y Wang, H. (2023). Sustainable agriculture through artificial intelligence: A bibliometric analysis. Sustainability, 15(3), 1056.

Yost, M., Kitchen, N. R., Sudduth, K. A., y Sadler, E. J. (2017). Long-term impact of a precision agriculture system on grain crop production. Precision Agriculture, 18(6), 840–856.

Zhang, Y., Liu, X., y Chen, Z. (2023). Big data applications in agriculture: A review. Computers and Electronics in Agriculture

Publicado

2025-09-24

Edição

Secção

Reviews