Inteligencia Artificial en la agricultura de precisión: Tendencias y direcciones futuras

Autores/as

DOI:

https://doi.org/10.35588/mwfneb13

Palabras clave:

agricultura de precisión, inteligencia artificial, sostenibilidad agrícola, adopción tecnológica

Resumen

La demanda de la producción agrícola mundial ha conllevado a la búsqueda de diferentes herramientas que contribuyan a la gestión optima de los recursos. Esta pesquisa presenta un mapeo bibliométrico sobre el uso de la inteligencia artificial en la agricultura de precisión a través del análisis de 479 artículos publicados entre 2019 y 2024 en las bases de datos Scopus y Web of Science permitiendo identificar una mayor producción científica en países con fuerte inversión tecnológica. La inteligencia artificial ha revolucionado la agricultura de precisión mediante el uso de sensores, aprendizaje automático, robótica y análisis predictivo permitiendo mejorar la productividad, reducir costos y mitigar impactos ambientales; lo que ha permitido el desarrollo de líneas de investigación que incluyen el monitoreo de cultivos, detección temprana de enfermedades, riego inteligente y agricultura sostenible. No obstante, la adopción enfrenta barreras como la brecha digital, altos costos iniciales y limitada capacitación técnica en zonas rurales, por lo cual, si se visiona una agricultura más eficiente, resiliente e inclusiva se debe hacer una implementación estratégica, gradual y adaptada al contexto.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adereti, D., McMaine, J. y Malik, A. (2024). Understanding barriers to smart farming in small-scale systems. Journal of Rural Studies, 101, 342-354.

Aria, M. y Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Banco Mundial (2023). Digital Agriculture: Farmers in the Driver’s Seat. Banco Mundial.

Bock, C.H., Barbedo, J.G.A., Del Ponte, E.M. y Mahlein, A.K. (2020). From visual estimates to fully automated sensor-based assessments of plant diseases. Phytopathology Research, 2, 1-9. https://doi.org/10.1186/s42483-020-00049-8

Bostanova, P.I., Palisat, I. y Koicheva, V. (2024). The economic impact of precision farming on sustainable agricultural development. Ekonomika i Upravlenie: Problemy, Resheniya.

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317

Chen, Z., Liu, X. y Zhang, Y. (2024). Blockchain in agriculture: Applications and challenges. Computers and Electronics in Agriculture, 210, 107745.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. y Lim, W.M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

FAO (2023a). Innovation in Agriculture: A Key Driver for Food Security and Sustainability. FAO.

____. (2023b). La ciencia, la tecnología y la innovación al servicio de una agricultura sostenible. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/science-technology-and-innovation/es

FAO y Banco Mundial (2021). Joint Report on Digital Agriculture and Climate Resilience. FAO y Banco Mundial.

Ferreira, P., Loures, A., Castanho, R., Chamizo, A., Loures, L. y Panagopoulos, T. (2020). Assessing the effectiveness of precision agriculture management systems in Mediterranean small farms. Sustainability, 12(9), 3765. https://doi.org/10.3390/su12093765

Fountas, S., Mylonas, N. y Gemtos, T.A. (2020). Smart farming and sustainability. Agronomy, 10(4), 637.

Goel, R., Yadav, C., Vishnoi, S. y Rastogi, R. (2021). Smart agriculture: Urgent need of the day in developing countries. Sustainable Computing Informatics and Systems, 30, 100512. https://doi.org/10.1016/j.suscom.2021.100512

Gyarmati, G. y Mizik, T. (2020). The present and future of the precision agriculture. IEEE 15th International Conference of System of Systems Engineering (SoSE).

Hernández-Sampieri, S. y Mendoza, C. (2020). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw Hill.

Huo, D., Malik, A., Ravana, S., Rahman, A. y Ahmedy, I. (2024). Mapping smart farming: Addressing agricultural sustainability through big data and AI. Renewable y Sustainable Energy Reviews, 186, 113858. 10.1016/j.rser.2023.113858

Keswani, B., Mohapatra, A., Mohanty, A., Khanna, A. y Rodrigues, J.J.P.C. (2019). Adapting weather conditions-based IoT-enabled smart irrigation in agriculture. Neural Computing and Applications, 31, 1401-1417. https://doi.org/10.1007/s00521-018-3737-1

Kim, M.Y. y Lee, K.H. (2022). Electrochemical sensors for sustainable precision agriculture—A review. Frontiers in Chemistry, 10, 848320.

Lowenberg-DeBoer, J. y Erickson, B. (2019). Precision agriculture technology adoption in the US. Journal of Agricultural and Applied Economics, 51(1), 1-16.

Majumder, K., Phadikar, S. y Bhakta, I. (2019). State-of-the-art technologies in precision agriculture: A systematic review. Journal of the Science of Food and Agriculture, 99(11), 4878-4888. https://doi.org/10.1002/jsfa.9740

Malik, A. y Wang, T. (2024). Smart farming adoption: Barriers and enablers in emerging economies. Journal of Cleaner Production, 402, 136978.

Neményi, M. y Nyéki, A. (2022). Crop yield prediction in precision agriculture. Agronomy, 12(10), 1-15. https://doi.org/10.3390/agronomy12102460

Padhiary, M. y Hoque, A. (2024). Automation and AI in precision agriculture: Innovations for enhanced crop management and sustainability. Asian Journal of Research in Computer Science, 20(10), 1-20. https://doi.org/10.9734/ajrcos/2024/v17i10512

Patel, K.K., Kumar, R. y Singh, D. (2024). A review on precision agriculture: An evolution and prospect for the future. International Journal of Plant y Soil Science, 36(5), 363-374. https://doi.org/10.9734/IJPSS/2024/v36i54534

Prakash, A., Bhambota, S., Kumar, S. y Sharma, A. (2024). Investigations of precision agriculture technologies with application to developing countries. Environment, Development and Sustainability, 27(7), 15135-15171. https://doi.org/10.1007/s10668-024-04572-y

Rodrigues, J.J.P.C. y Mohapatra, A. (2022). Wireless sensor networks for agriculture: A comprehensive review. Sensors, 22(4), 1432.

Rozenstein, O., Cohen, Y., Alchanatis, V. y Behrendt, K. (2024). Data-driven agriculture and sustainable farming using machine learning and remote sensing. Precision Agriculture, 25, 233-249. https://doi.org/10.1007/s11119-023-10061-5

Rutter, S.M. y Rozenstein, O. (2024). Livestock monitoring with AI and sensors: State of the art. Animals, 14(2), 230.

Sanyaolu, M. y Sadowski, A. (2024). The role of precision agriculture technologies in enhancing sustainable agriculture. Sustainability, 16(15), 6668. https://doi.org/10.3390/su16156668

Stock, R., Ogunyiola, A. y Gardezi, M. (2024). Precision agriculture and the future of agrarian labor in the US food system. Agriculture and Human Values, 41(3), 1-15. https://doi.org/10.1007/s10460-024-10615-x

Stumpe, C., Leukel, J. y Zimpel, T. (2024). Prediction of pasture yield using machine learning and remote sensing technologies. Precision Agriculture, 25, 150-169. https://doi.org/10.1007/s11119-023-10079-9

Ubina, N.A. y Cheng, S. (2022). A review of unmanned system technologies with applications in precision agriculture. Drones, 6(1), 12. https://doi.org/10.3390/drones6010012

Van Eck, N.J. y Waltman, L. (2014). Visualizing bibliometric networks. En Y. Ding, R. Rousseau, y D. Wolfram (Eds.), Measuring Scholarly Impact (pp. 285-20). Springer. https://doi.org/10.1007/978-3-319-10377-8_13

Vasconez, J.P., Delpiano, J., Vougioukas, S., y Auat Cheein, F.A. (2020). Comparison of convolutional neural networks in agricultural classification tasks. Computers and Electronics in Agriculture, 175, 105348. https://doi.org/10.1016/j.compag.2020.105348

Verrelst, J., Rivera-Caicedo, J.P. y Moreno, J. (2021). Remote sensing of vegetation traits using machine learning. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 56-68.

Yadav, C., Goel, R. y Rastogi, R. (2022). Edge computing in agriculture: Opportunities and challenges. Future Generation Computer Systems, 136, 252-264.

Yang, Y. y Wang, H. (2023). Sustainable agriculture through artificial intelligence: A bibliometric analysis. Sustainability, 15(3), 1056.

Yao, Y. y Zhao, Y (2023). Application of big data classification algorithm in agriculture. En IEEE 12th International Conference on Communication Systems and Network Technologies (pp. 524-528). Bhopal, India. https://doi.org/10.1109/CSNT57126.2023.10134623

Yost, M., Kitchen, N.R., Sudduth, K.A. y Sadler, E.J. (2017). Long-term impact of a precision agriculture system on grain crop production. Precision Agriculture, 18(6), 840-856. https://doi.org/10.1007/s11119-016-9490-5

Descargas

Enviado

2025-07-15

Publicado

2025-09-24

Número

Sección

Reviews