Evaluation Approach for Parameter Settings in Genetic Algorithm: A Case of the 0-1 Knapsack Problem

Authors

DOI:

https://doi.org/10.35588/jyravv64

Keywords:

Genetic algorithm, 0-1 knapsack problem, Parameter configuration, Combinatorial Optimization

Abstract

Experimentation with different configurations of the genetic algorithm revealed that a low mutation probability, combined with an appropriate tournament size, significantly improves the algorithm's performance. This is reflected in the reduction of the average GAP and the maximization of the achieved objective value, thereby establishing quantifiable benchmark parameters for efficient implementations of the 0-1 knapsack problem. The novelty of the study lies in providing concrete guidelines for practical applications, identifying consistent relationships between parameter configuration and algorithm behavior. While genetic algorithms are effective in exploring large search spaces in NP-complete problems, this work demonstrates that they require precise calibration to avoid premature convergence. It was found that the mutation probability and tournament size directly influence the algorithm's exploratory and exploitative dynamics. In general, combinations with low mutation and intermediate tournament sizes offered a good balance between solution quality and stability, whereas extreme values (mutation of 0.20 or tournament size k = 2/k = 4) increased performance variability, especially in larger-scale problems. These findings highlight the algorithm’s sensitivity to these parameters and underscore the importance of careful tuning to preserve its effectiveness in complex scenarios.

Downloads

Download data is not yet available.

Author Biographies

  • Gustavo Alcántara-Aravena, Universidad de Santiago de Chile
    Doctorando en Ciencias de la Ingeniería con mención en Informática, Universidad De Santiago de Chile (USACH).
  • Camilo Acuña-Porras, Pontificia Universidad Católica de Chile

    Dr., Pontificia Universidad Católica de Chile. Santiago, Chile.

References

Ahmed, Z. y Younas, I. (2011). A Dynamic Programming based GA for 0-1 Modified

Knapsack Problem. International Journal of Computer Applications, 16(7), 1-6. https://doi.org/10.5120/2028-2668

Eiben, A. E. y Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. https://doi.org/10.1016/j.swevo.2011.02.001

Ezziane, Z. (2002). Solving the 0/1 knapsack problem using an adaptive genetic algorithm. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 16(1), 23-30. https://doi.org/10.1017/s0890060401020030

He, J., He, F. y Dong, H. (2014). A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem. arXiv:1404.0868 [cs.NE]. https://doi.org/10.48550/arXiv.1404.0868

Hinterding, R., Michalewicz, Z. y Eiben, A. E. (1997). Adaptation in evolutionary computation: a survey. IEEE International Conference on Evolutionary Computation (ICEC ’97), 65-69. https://doi.org/10.1109/icec.1997.592270

Hota, A. R. y Pat, A. (2010). An adaptive quantum‑inspired differential evolution algorithm for 0-1 knapsack problem. 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), 703-708. https://doi.org/10.1109/nabic.2010.5716320

Khuri, S., Bäck, T. y Heitkötter, J. (1994). The zero/one multiple knapsack problem and genetic algorithms. ACM symposium on Applied computing - SAC ’94, 188-193. https://doi.org/10.1145/326619.326694

Krasnogor, N. y Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5), 474-488. https://doi.org/10.1109/tevc.2005.850260

Malanthara, A. y Kale, I. R. (2025). Hybrid Firefly-Genetic Algorithm for Single and Multi-dimensional 0-1 Knapsack Problems (Versión 1). arXiv:2501.14775 [cs.NE]. https://doi.org/10.48550/ARXIV.2501.14775

Owais, W. B., Alkhazendar, I. W. J. y Saleh, M. (2020). Evaluating the impact of different types of crossover and selection methods on the convergence of 0/1 Knapsack using Genetic Algorithm. Computer Science & Information Technology (CS & IT), 01-16. https://doi.org/10.5121/csit.2020.101101

Pisinger, D. (2005). Where are the hard knapsack problems? Computers & Operations Research, 32(9), 2271-2284. https://doi.org/10.1016/j.cor.2004.03.002

Pradhan, T., Israni, A. y Sharma, M. (2014). Solving the 0–1 Knapsack problem using Genetic Algorithm and Rough Set Theory. IEEE International Conference on Advanced Communications, Control and Computing Technologies, 1120-1125. https://doi.org/10.1109/icaccct.2014.7019272

Raidl, G. R. (1998). An improved genetic algorithm for the multiconstrained 0-1 knapsack problem. IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 207-211. https://doi.org/10.1109/icec.1998.699502

Umbarkar, A. J. y Joshi, M. S. (2014). 0/1 Knapsack Problem using Diversity based Dual Population Genetic Algorithm. International Journal of Intelligent Systems and Applications, 6(10), 34-40. https://doi.org/10.5815/ijisa.2014.10.05

Yan, T. S., Guo, G. Q., Li, H. M. y He, W. (2013). A Genetic Algorithm for Solving Knapsack Problems Based on Adaptive Evolution in Dual Population. Advanced Materials Research, 756-759, 2799-2802. https://doi.org/10.4028/www.scientific.net/amr.756-759.2799

Yang, Y. (2024). An upper bound of the mutation probability in the genetic algorithm for general 0-1 knapsack problem. arXiv:2403.11307 [cs.NE]. https://doi.org/10.48550/arXiv.2403.11307

Kim, Y., Kim, J.‑H. y Han, K.‑H. (2006). Quantum-inspired Multiobjective Evolutionary Algorithm for Multiobjective 0/1 Knapsack Problems. IEEE International Conference on Evolutionary Computation, 2601‑2606. https://doi.org/10.1109/cec.2006.1688633

Downloads

Published

2025-09-11

Issue

Section

Technology

How to Cite

Evaluation Approach for Parameter Settings in Genetic Algorithm: A Case of the 0-1 Knapsack Problem. (2025). People and Technology Management Journal, 18(53), 39-76. https://doi.org/10.35588/jyravv64