Percepção dos alunos sobre o agente conversacional para inovar o processo educacional de programação Python
DOI:
https://doi.org/10.35588/s9mpgc07Palavras-chave:
Agente conversacional, ensino, ensino superior, TICResumo
O objetivo geral desta pesquisa mista é analisar a percepção dos alunos sobre a utilização do Agente Conversacional para Programação Python (ACPP) considerando a ciência de dados. A amostra é composta por 25 alunos do Bacharelado em Ciências da Terra que cursaram a disciplina Ferramentas Computacionais durante o ano letivo de 2025 na Universidade Nacional Autônoma do México. Da mesma forma, foi utilizada outra amostra composta por 5 professores do Mestrado em Docência para o Ensino Médio da UNAM. Os resultados indicam que o ACPP favorece os aspectos de aprendizagem, motivação e entusiasmo. Da mesma forma, o algoritmo da árvore de decisão criou 2 modelos de previsão considerando estilo de aprendizagem, gênero e habilidades tecnológicas. Concluindo, o ACPP representa uma alternativa tecnológica de inovação educacional porque os alunos podem se comunicar com este agente conversacional a qualquer hora do dia, independentemente da localização física.
Downloads
Referências
Almarashdi, H. S., Jarrah, A. M., Abu-Khurma, O. y Gningue, S. M. (2024). Unveiling the potential: A systematic review of ChatGPT in transforming mathematics teaching and learning. Eurasia Journal of Mathematics, Science and Technology Education, 20(12), em2555. https://doi.org/10.29333/ejmste/15739
Basarir, L. (2022). Modelling AI in Architectural Education. Gazi University Journal of Science, 35(4), 1260-1278. https://doi.org/10.35378/gujs.967981
Granda-Piñan, A. R., Alameda-Villarrubia, A. y Mengual-Andrés, S. (2024). Teachers’ perceptions on the effect of in-service training in Innovative Learning Environments on the implementation of student-centred approaches. IJERI: International Journal of Educational Research and Innovation, (22), 1-13. https://doi.org/10.46661/ijeri.10636
Hays, J. D., Pfirman, S., Blumenthal, B., Kastens, K. y Menke, W. (2000). Earth science instruction with digital data. Computer & Geosciences, 6, 657-668. https://doi.org/10.1016/S0098-3004(99)00101-6
Hibert, C., Mangeney, A., Grandjean, G. y Baillard, C. (2014). Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano. Journal of Geophysical Research: Earth Surface. JGE Earth Surface, 119, 1082-1105. https://doi.org/10.1002/2013JF002970
Kerimbayev, N., Adamova, K., Shadiev, R. y Altinay, Z. (2025). Intelligent educational technologies in individual learning: a systematic literature review. Smart Learning Environments, 12, 1. https://doi.org/10.1186/s40561-024-00360-3
Kilinc, S. (2024). Comprehensive AI assessment framework: Enhancing educational evaluation with ethical AI integration. Journal of Educational Technology and Online Learning, 7, 521-540. https://doi.org/10.31681/jetol.1492695
Lee, G. G., Mun, S., Shin, M. K. y Zhai, X. (2025). Collaborative Learning with Artificial Intelligence Speakers. Science & Education. https://doi.org/10.1007/s11191-024-00526-y
Lin, C. C., Huang, A. Y. Q., y Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments, 10, 41. https://doi.org/10.1186/s40561-023-00260-y
Mazzeo, O., Monacis, L. y Contini, P. (2025). Academic success in synchronous online learning environments. Turkish Online Journal of Distance Education, 26(1), 16-28. https://doi.org/10.17718/tojde.1444067
Orok, E., Okaramee, C., Egboro, B. y Akawa. B. (2024). Pharmacy students’ perception and knowledge of chat-based artificial intelligence tools at a Nigerian University. BMC Medical Education, 24, 1237. https://doi.org/10.1186/s12909-024-06255-8
Perea-Matins, J. E. M. (2024). Design of an electronic device in the STEAM context to relate results of physical measurements with sounds, and its analysis through science teachers’ perception. IJERI: International Journal of Educational Research and Innovation, (21), 1-21. https://doi.org/10.46661/ijeri.9391
Salas-Rueda, R. A. (2024). Análisis sobre las plataformas LMS considerando el deep learning y random forest. Revista Fuentes, 26(2), 134-146. https://doi.org/10.12795/revistafuentes.2024.24123
Salas-Rueda, R. A. y Alvarado-Zamorano, C. (2024). Teachers’ perceptions about the use of learning management systems during the covid-19 pandemic considering data science. Turkish Online Journal of Distance Education, 25(1), 260-272. https://doi.org/10.17718/tojde.1090350
Salas-Rueda, R. A., Castañeda-Martínez, R., Ramírez-Ortega, J. y Martínez-Ramírez, S. M. (2025). Use of the deep learning and decision tree techniques to analyze the incorporation of technology in the educational field. Digital Education Review, 46,26-39. https://doi.org/10.1344/der.2025.46.26-39
Sumi, S. M., Zaman, M. F. y Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the fukuoka city case. International Journal of Applied Mathematics and Computer Science, 22, 841-854. https://doi.org/10.2478/v10006-012-0062-1
Sun, Z., Crystal-Ornelas, R., Mostafa-Mousavi, S. y Wang, J. (2022). A review of Earth Artificial Intelligence. Computers and Geosciences, 159, 105034. https://doi.org/10.1016/j.cageo.2022.105034
Tarisayi, K. y Manhibi, R. (2025). Revolutionizing Education in Zimbabwe: Stakeholder Perspectives on Strategic AI Integration. Journal of Learning and Teaching in Digital Age, 10(1), 87-93. https://doi.org/10.53850/joltida.1493508
Vasconcelos, M. A. R. y Dos-Santos, R. P. (2023). Enhancing STEM learning with ChatGPT and Bing Chat as objects to think with: A case study. Eurasia Journal of Mathematics, Science and Technology Education, 19(7), em2296. https://doi.org/10.29333/ejmste/13313
Downloads
Submetido
2025-02-26Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Revista Electrónica Gestión de las Personas y Tecnología

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.








