Valorización de los residuos de cáscara de papa mediante el concepto de biorrefinería
DOI:
https://doi.org/10.35588/jsq04z36Palabras clave:
Valorización de residuos, biorefinería, compuestos fenólicos, biocombustibles, análisis tenoeconómicoResumen
La conversión industrial de productos agrícolas genera residuos de biomasa con un alto potencial para obtener productos de valor agregado. El procesamiento industrial de la papa genera grandes cantidades de residuos con alto contenido de polímeros estructurales como celulosa y almidón y fenólicos . Varios estudios han evaluado diferentes vías para valorizar la biomasa residual de la industria de la papa en una serie de productos de valor agregado y vectores energéticos a escala. Sin embargo, pocos estudios han analizado la prefactibilidad de implementar estas alternativas a escala industrial. Este trabajo tuvo como objetivo determinar la prefactibilidad técnica y económica de la valorización de residuos de cáscara de papa como una alternativa a implementar en Colombia. El estudio se dividió en tres etapas: revisión bibliográfica, diseño y simulación de biorrefinería y análisis tecno económico. Los resultados muestran que a partir de la cáscara de papa se pueden producir 3,7 mg/g b.s. de ácido clorogénico, 179,8 L/tonelada de etanol y 256 ml de biogás/g SV. La biorrefinería es factible a escalas superiores a 100 toneladas/h y puede implementarse en la región de Boyacá, Colombia. Sin embargo, el análisis debería considerar factores logísticos para reducir la incertidumbre en los esquemas propuestos.
Descargas
Referencias
Alonso-Gómez, L.A., Solarte-Toro, J.C., Bello-Pérez, L.A., and Cardona-Alzate, C.A. (2020). Performance Evaluation and Economic Analysis of the Bioethanol and Flour Production Using Rejected Unripe Plantain Fruits (Musa paradisiaca L.) as Raw Material. Food and Bioproducts Processing, 121, 29-42. https://doi.org/10.1016/j.fbp.2020.01.005
Barati, Z., Latif, S., and Müller, J. (2019). Enzymatic Hydrolysis of Cassava Peels as Potential Pre-treatment for Peeling of Cassava Tubers. Biocatalysis and Agricultural Biotechnology, 20(July), 101247. https://doi.org/10.1016/j.bcab.2019.101247
Burbano-Cuasapud, J.M., Solarte-Toro, J.C., Restrepo-Serna, D.L., and Cardona Alzate, C.A. (2023). Process Sustainability Analysis of Biorefineries to Produce Biofertilizers and Bioenergy from Biodegradable Residues. Fermentation, 9(9), 788. https://doi.org/10.3390/fermentation9090788
Burniol-Figols, A., Cenian, K., Skiadas, I.V., and Gavala, H.N. (2016). Integration of Chlorogenic Acid Recovery and Bioethanol Production from Spent Coffee Grounds. Biochemical Engineering Journal, 116, 54-64. https://doi.org/10.1016/j.bej.2016.04.025
Campos, H. and Ortiz, O. (2019). The potato crop: Its agricultural, nutritional and social Contribution to Humankind. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. https://doi.org/10.1007/978-3-030-28683-5
Cao, J., Xu, C., Zhou, R., Duan, G., Lin, A., Yang, X., You, S., Zhou, Y., & Yang, G. (2022). Potato peel waste for fermentative biohydrogen production using different pretreated culture. Bioresource Technology, 362(August), 127866. https://doi.org/10.1016/j.biortech.2022.127866
Escanciano, I. A., Santos, V. E., Blanco, Á., & Ladero, M. (2023). Bioproduction of succinic acid from potato waste. Kinetic modeling. Industrial Crops and Products, 203(March). https://doi.org/10.1016/j.indcrop.2023.117124
Felekis, V., Stavraki, C., Malamis, D., Mai, S., & Barampouti, E. M. (2023). Optimisation of Bioethanol Production in a Potato Processing Industry. Fermentation, 9(2). https://doi.org/10.3390/fermentation9020103
Frosi, I., Montagna, I., Colombo, R., Milanese, C., and Papetti, A. (2021). Recovery of Chlorogenic Acids from Agri-food Wastes: Updates on Green Extraction Techniques. Molecules, 26(15), 1-22. https://doi.org/10.3390/molecules26154515
García-Velásquez, C.A. and Cardona, C.A. (2019). Comparison of the Biochemical and Thermochemical Routes for Bioenergy Production: A Techno-economic (TEA), Energetic and Environmental Assessment. Energy, 172, 232-242. https://doi.org/10.1016/j.energy.2019.01.073
Indiamart (2019). Gluconic Acid, Grade Standard: Technical Grade for Industrial. Indiamart.
Iyer, N. and Balasubramanian, V. (2022). Study on Potential Use of Semi-solid Potato Peel Waste in Biomethanation and Pelletization. Biomass Conversion and Biorefinery, 1-13.
Jarbezki, A.B. (1992). Modelling of Oscillatory Behaviour in Continuous Ethanol Fermentation. Biotechnology Letters, 14(2), 137-142. https://doi.org/10.1007/BF01026241
Jimenez-Champi, D., Romero-Orejon, F.L., Moran-Reyes, A., Muñoz, A.M., and Ramos-Escudero, F. (2023). Bioactive Compounds in Potato Peels, Extraction Methods, and their Applications in the Food Industry: A Review. CyTA Journal of Food, 21(1), 418-432. https://doi.org/10.1080/19476337.2023.2213746
Kapanji, K.K., Haigh, K.F. and Görgens, J.F. (2021). Techno-economics of Lignocellulose Biorefineries at South African Sugar Mills Using the Biofine Process to Co-produce Levulinic Acid, Furfural and Electricity along with Gamma Valeractone. Biomass and Bioenergy, 146, 106008. https://doi.org/10.1016/j.biombioe.2021.106008
Liang, S., McDonald, A.G., and Coats, E.R. (2014). Lactic Acid Production from Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Management, 45, 51-56. https://doi.org/10.1016/j.wasman.2015.02.004
Lima, M. de A., Andreou, R., Charalampopoulos, D., and Chatzifragkou, A. (2021). Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Applied Sciences (Switzerland), 11(8), 3410. https://doi.org/10.3390/app11083410
Martínez-Maldonado, F.E., Castaño-Marín, A.M., Góez-Vinasco, G.A., and Marin, F.R. (2021). Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum l.) in the Colombian Andean Region Using Eddy Covariance Technique. Water (Switzerland), 13(22). https://doi.org/10.3390/w13223223
Ministerio de Agricultura y Desarrollo Rural de Colombia (MinAgricultura) (2022). Reporte: Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. Estadísticas Agropecuarias.
Moncada, J., Tamayo, J.A., and Cardona, C.A. (2014). Integrating First, Second, and Third Generation Biorefineries: Incorporating Microalgae into the Sugarcane Biorefinery. Chemical Engineering Science, 118, 126-140. https://doi.org/10.1016/j.ces.2014.07.035
Náthia-Neves, G. and Alonso, E. (2021). Valorization of Sunflower By-product Using Microwave-assisted Extraction to Obtain a Rich Protein Flour: Recovery of Chlorogenic Acid, Phenolic Content and Antioxidant Capacity. Food and Bioproducts Processing, 125, 57-67. https://doi.org/10.1016/j.fbp.2020.10.008
Nguyen, V., Taine, E. G., Meng, D., Cui, T., and Tan, W. (2024). Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients, 16(7), 924.
Ortiz-Sanchez, M., Solarte-Toro, J.C., Orrego-Alzate, C.E., Acosta-Medina, C.D., and Cardona-Alzate, C.A. (2020). Integral Use of Orange Peel Waste through the Biorefinery Concept: An experimental, Technical, Energy, and Economic Assessment. Biomass Conversion and Biorefinery, 11, 645-659. https://doi.org/10.1007/s13399-020-00627-y
Peters, M., Timmerhaus, K., and West, R. (2003). Plant Design and Economics for Chemical Engineers. McGraw Hill.
Quintero, J.A. and Cardona, C.A. (2011). Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Industrial & Engineering Chemistry Research, 50(10), 6205-6212. https://doi.org/10.1021/ie101767x
Rodríguez-Amado, I., Franco, D., Sánchez, M., Zapata, C., and Vázquez, J.A. (2014). Optimization of Antioxidant Extraction from Solanum tuberosum Potato Peel Waste by Surface Response Methodology. Food Chemistry, 165, 290-299. https://doi.org/10.1016/j.foodchem.2014.05.103
Romero-García, J.M., Sanchez, A., Rendón-Acosta, G., Martínez-Patiño, J. C., Ruiz, E., Magaña, G., and Castro, E. (2016). An Olive Tree Pruning Biorefinery for Co-producing High Value-added Bioproducts and Biofuels: Economic and Energy Efficiency Analysis. Bioenergy Research, 9(4), 1070-1086. https://doi.org/10.1007/s12155-016-9786-3
Ruiz-Mercado, G.J., González, M.A., and Smith, R.L. (2013). Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study. Industrial and Engineering Chemistry Research, 52(20), 6747-6760. https://doi.org/10.1021/ie302804x
Ruiz-Mercado, G.J., Smith, R.L., and González, M.A. (2012). Sustainability Indicators for Chemical Processes: I and II, Taxonomy and Data Needs. Industrial and Engineering Chemistry Research, 51(5), 2309-2328. https://doi.org/10.1021/ie102116e
Silva, M. de O., Honfoga, J.N.B., de Medeiros, L.L., Madruga, M.S., and Bezerra, T.K.A. (2021). Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules, 26(1). https://doi.org/10.3390/MOLECULES26010046
Solarte-Toro, J.C., Ortiz-Sanchez, M., Restrepo-Serna, D.L., Peroza Piñeres, P., Pérez Cordero, A., and Cardona Alzate, C.A. (2021). Influence of Products Portfolio and Process Contextualization on the Economic Performance of Small and Large Scale Avocado Biorefineries. Bioresource Technology, 342(July). https://doi.org/10.1016/j.biortech.2021.126060
Solarte-Toro, J.C., Romero-García, J.M., Susmozas, A., Ruiz, E., Castro, E., and Cardona-Alzate, C.A. (2019). Techno-economic Feasibility of Bioethanol Production Via Biorefinery of Olive Tree Prunings (OTP): Optimization of the Pretreatment Stage. Holzforschung, 73(1), 3-13. https://doi.org/10.1515/hf-2018-0096
Soltaninejad, A., Jazini, M., and Karimi, K. (2022). Sustainable Bioconversion of Potato Peel Wastes into Ethanol and Biogas Using Organosolv Pretreatment. Chemosphere, 291(P1), 133003. https://doi.org/10.1016/j.chemosphere.2021.133003
Tobiszewski, M., Marć, M., Gałuszka, A., and Namies̈nik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 20(6), 10928-10946. https://doi.org/10.3390/molecules200610928
Towler, G.P. and Sinnott, R. (2012). Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier. https://doi.org/10.1016/C2009-0-61216-2
Wooley, R.J. and Putsche, V. (1996). Development of an Aspen Plus Property Database for Biofuels Components. National Renewable Energy Laboratory.
Wu, T., Yan, J., Liu, R., Marcone, M.F., Aisa, H.A., and Tsao, R. (2012). Optimization of Microwave-assisted Extraction of Phenolics from Potato and its Downstream Waste Using Orthogonal Array Design. Food Chemistry, 133(4), 1292-1298. https://doi.org/10.1016/j.foodchem.2011.08.002
Yu, Z., Du, Y., Shang, X., Zheng, Y., and Zhou, J. (2018). Enhancing Fermentable Sugar Yield from Cassava Residue Using a Two-step Dilute Ultra-low Acid Pretreatment Process. Industrial Crops and Products, 124, 555-562. https://doi.org/10.1016/j.indcrop.2018.08.029