Control de temperatura con PID e iluminación con voltaje continuo para la evaluación del efecto sobre el índice de estabilidad del aceite de soya (Glycine max)

Autores/as

DOI:

https://doi.org/10.35588/f7emr124

Palabras clave:

aceite, iluminación, temperatura

Resumen

Actualmente, los productos alimenticios, como el aceite, se exhiben a elevadas intensidades de iluminación y en ocasiones a temperaturas por encima de los 20 °C, factores que pueden acelerar la rancidez oxidativa, como la degradación de la calidad del aceite. Esta es la razón por la cual se implementó un sistema de control PID (Proporcional-Integral-Derivativo) que permitió realizar pruebas de calidad del aceite almacenado en diferentes condiciones de temperatura (13 °C a 27 °C). Durante esas pruebas, se halló la función de transferencia del sistema y el controlador, utilizando la sintonía automática de la caja de control. Esto mejoró la precisión y el voltaje continuo para la iluminación (de 155 lux a 1145 lux), variando la intensidad de los LED. Para el diseño experimental, se utilizó el diseño central compuesto (DCC), lo que resultó en trece tratamientos. A los treinta días, se evaluó la calidad del aceite (índice de acidez e índice de peróxidos), y se determinó el índice de estabilidad oxidativa mediante el método Rancimat. Se encontró que la temperatura y la iluminación presentan un efecto significativo sobre la calidad y la estabilidad oxidativa del aceite (p < 0.05), logrando la condición de almacenamiento con mayor estabilidad a 300 lux de iluminación y 15 °C de temperatura.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Chen, J., Zhang, L., Li, Q., Gao, Y. y Yu, X. (2022). Utilization of Diaphragma Juglandis Extract as a Natural Antioxidant for Improving the Oxidative Stability of Soybean Oil During Deep Frying. Food Chemistry, X(14), 100359. https://doi.org/10.1016/j.fochx.2022.100359

Chen, J., Wang, Y., Liu, W., Zhang, F., Li, J., Yang, H. y Bi, Y. (2022). Effects of Free Fatty Acids and Peroxide on Thermal Loss of Sesamol and Formation of its Transformation Products in Soybean oil. LWT, 159, 113236. https://doi.org/10.1016/j.lwt.2022.113236

De Oliveira, M.A.L., Balesteros, M.R., Faría, A.F. y Vaz, F.A.S. (2010). Determination of Olive Oil Acidity. En V.R. Preedy y R.R. Watson (Eds.), Olives and Olive Oil in Health and Disease Prevention (pp. 545-552). Elsevier. https://doi.org/10.1016/B978-0-12-374420-3.00059-0

De Almeida, D.T., Viana, T.V., Costa, M.M., Silva, C. de S. y Feitosa, S. (2019). Effects of Different Storage Conditions on the Oxidative Stability of Crude and Refined Palm Oil, Olein and Stearin (Elaeis guineensis). Food Science and Technology (Brazil), 39, 211-217. https://doi.org/10.1590/fst.43317

García-Moreno, P.J., Pérez-Gálvez, R., Guadix, A. y Guadix, E.M. (2013). Influence of the Parameters of the Rancimat Test on the Determination of the Oxidative Stability Index of Cod Liver Oil. LWT - Food Science and Technology, 51(1), 303-308. https://doi.org/10.1016/j.lwt.2012.11.002

Gong, G., Wu, S. y Wu, X. (2019). Effects of Storage Time and Temperature on Toxic Aldehydes and Polycyclic Aromatic Hydrocarbons in Flavouring Oil Gravy During Storage. LWT, 116, 108510. https://doi.org/10.1016/J.LWT.2019.108510

Hoffmann, J.F., Fasquelle, T., Vaitilingom, G., Olives, R., Py, X. y Goetz, V. (2019). Compatibility of Vegetable Oils with Solid Filler Materials for Thermocline Thermal Energy Storage Systems. Solar Energy Materials and Solar Cells, 200, 109932. https://doi.org/10.1016/J.SOLMAT.2019.109932

Hua, H., Wu, S. y Ma, X. (2022). Determination of trans-4-hydroxy-2-alkenals in Thermally Treated Soybean Oil by SPE-HPLC. Grain & Oil Science and Technology, 5(12), 107-113. https://doi.org/10.1016/j.gaost.2022.06.001

Jiang, H., He, Y. y Chen, Q. (2021). Determination of Acid Value During Edible Oil Storage Using a Portable NIR Spectroscopy System Combined with Variable Selection algorithms Based on an MPA-based Dtrategy. Journal of the Science of Food and Agriculture, 101(8), 3328-3335. https://doi.org/10.1002/jsfa.10962

Jiang, Y., Su, M., Yu, T., Du, S., Liao, L., Wang, H., Wu, Y. y Liu, H. (2021). Quantitative Determination of Peroxide Value of Edible Oil by Algorithm-assisted Liquid Interfacial surface Enhanced Raman Spectroscopy. Food Chemistry, 344, 128709. https://doi.org/10.1016/j.foodchem.2020.128709

Joseph, S.B., Dada, E.G., Abidemi, A., Oyewola, D.O. y Khammas, B.M. (2022). Metaheuristic Algorithms for PID Controller Parameters Tuning: Review, Approaches and open Problems. Heliyon, 8(5), e09399. https://doi.org/10.1016/j.heliyon.2022.e09399

Kherkhar, A., Chiba, Y., Tlemçani, A. y Mamur, H. (2022). Thermal Investigation of a Thermoelectric Cooler Based on Arduino and PID Control Approach. Case Studies in Thermal Engineering, 36, 102249. https://doi.org/10.1016/j.csite.2022.102249

Knowlton, S. (2022). High-oleic Soybean Oil. En F.J. Flider (Ed.), High Oleic Oils: Development, Properties and Uses (pp. 53-87). AOCS Press. https://doi.org/10.1016/B978-0-12-822912-5.00007-1

Li, X., Li, Y., Yang, F., Liu, R., Zhao, C., Jin, Q. y Wang, X. (2019). Oxidation Degree of Soybean Oil at Induction Time Point under Rancimat Test Condition: Theoretical Derivation and Experimental Observation. Food Research International, 120, 756-762. https://doi.org/10.1016/j.foodres.2018.11.036

Liu, Z., Sharma, B.K., Erhan, S.Z., Biswas, A., Wang, R. y Schuman, T.P. (2015). Oxidation and Low Temperature Stability of Polymerized Soybean Oil-based Lubricants. Thermochimica Acta, 601, 9-16. https://doi.org/10.1016/J.TCA.2014.12.010

Lubitza, S. (2019). Evaluación del efecto antioxidante de arabinoxilanos del maíz (Zea Mays) en aceites comerciales utilizando el método Rancimat. [Investigación de grado]. Universidad de Sonora.

Lužaić, T., Kravić, S., Stojanović, Z., Grahovac, N., Jocić, S., Cvejić, S., Pezo, L. y Romanić, R. (2023). Investigation of Oxidative Characteristics, Fatty Acid Composition and Bioactive Compounds Content in Cold Pressed Oils of Sunflower Grown in Serbia and Argentina. Heliyon, 9(7), 1-16. https://doi.org/10.1016/j.heliyon.2023.e18201

Makhlouf, F.Z., Squeo, G., Difonzo, G., Faccia, M., Pasqualone, A., Summo, C., Barkat, M. y Caponio, F. (2021). Effects of Storage on the Oxidative Stability of Acorn Oils Extracted from Three Different Quercus Species. Journal of the Science of Food and Agriculture, 101(1), 131-138. https://doi.org/10.1002/jsfa.10623

Manzoor, S., Masoodi, F.A., Rashid, R. y Dar, M.M. (2022). Effect of Apple Pomace-based Antioxidants on the Stability of Mustard Oil During Deep Frying of French Fries. Lwt, 163, 113576. https://doi.org/10.1016/j.lwt.2022.113576

Mao, X., Chen, W., Huyan, Z., Sherazi, S. T.H. y Yu, X. (2020). Impact of Linolenic acid on Oxidative Stability of Rapeseed Oils. Journal of Food Science and Technology, 57(9), 3184-3192. https://doi.org/10.1007/s13197-020-04349-x

Martínez, J., García, K., Vargas, J., Arias, A. y Hernández, J. (2016). Efecto de la temperatura de almacenamiento sobre la calidad fisicoquímica del aceite de palma (RBD) y la margarina vegetal. Revista Alimentos Hoy.

Medeiros Vicentini-Polette, C., Rodolfo Ramos, P., Bernardo Gonçalves, C y Lopes de Oliveira, A. (2021). Determination of Free Fatty Acids in Crude Vegetable Oil Samples Obtained by High-pressure Processes. Food Chemistry: X, 12, 100166. https://doi.org/10.1016/j.fochx.2021.100166

Mikołajczak, N. y Tańska, M. (2022). Effect of Initial Quality and Bioactive Compounds content in Cold-pressed Flaxseed Oils on Oxidative Stability and Oxidation Products Formation During One-month Storage with Light Exposure. NFS Journal, 26, 10-21. https://doi.org/10.1016/j.nfs.2022.02.001

Nogueira, M.S., Scolaro, B., Milne, G.L. y Castro, I.A. (2019). Oxidation Products from Omega-3 and Omega-6 Fatty Acids During a Simulated Shelf Life of Edible Oils. Lwt, 101, 113-122. https://doi.org/10.1016/j.lwt.2018.11.044

Olagunju, A.I., Adelakun, O.S. y Olawoyin, M.S. (2022). The Effect of Rice Bran Extract on the Quality Indices, Physicochemical Properties and Oxidative Stability of Soybean Oil Blended with Various Oils. Measurement: Food, 6, 100032. https://doi.org/10.1016/j.meafoo.2022.100032

Quanhong, L. y Caili, F. (2005). Application of Response Surface Methodology for Extraction Optimization of Germinant Pumpkin Seeds Protein. Food Chemistry, 92(4), 701-706. https://doi.org/10.1016/j.foodchem.2004.08.042

Rodríguez, G., Villanueva, E., Glorio, P. y Baquerizo, M. (2015). Estabilidad oxidativa y estimación de la vida útil del aceite de sacha inchi (Plukenetia volubilis L.). Scientia Agropecuaria, 6(3), 155-163. https://doi.org/10.17268/sci.agropecu.2015.03.02

Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., Sagymbek, A. y Yu, X. (2021). Analytical Methods for Determining the Peroxide Value of Edible Oils: A Mini-review. Food Chemistry, 358, 129834. https://doi.org/10.1016/j.foodchem.2021.129834

Descargas

Publicado

2024-07-17 — Actualizado el 2024-07-17

Versiones

Número

Sección

Artículos