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[ RESUMEN ]

Se discute la presentación de los contenidos elementales de termodinámica en un curso
universitario para alumnos de ingeniería, a partir de modelos microscópicos de la mecánica
clásica. Se argumenta que de este modo se logra una aplicación de la mecánica clásica de los
sistemas de partículas, y una primera aproximación a los modelos microscópicos de la estructura
de la materia. El modelo de partículas clásicas es usado para deducir la ecuación de estado de
un gas ideal, entender la presión y relacionar la temperatura absoluta del gas con la energía
cinética media de traslación por molécula. Los teoremas de trabajo y energía mecánica de
un sistema de partículas se utilizan para entender los conceptos termodinámicos de energía
interna, trabajo y calor, y para reencontrar el primer principio de la termodinámica. La entropía
se presenta matemáticamente como una función proporcional al logaritmo del gran número de
estados microscópicos posibles para un estado macroscópico. A partir de esa definición y de
postular que en un sistema aislado la entropía solo puede crecer hasta que el sistema alcance el
equilibrio termodinámico se obtiene la presentación macroscópica usual del segundo principio
de la termodinámica.

[ PALABRAS CLAVES ]
termodinámica, modelos microscópicos, mecánica clásica, mecánica estadística,
teoría cinética de los gases.

[ ABSTRACT ]

The presentation of elementary thermodynamics for engineering students using microscopic
models based on classical mechanics is discussed. It is argued that it is a first approximation
to the microscopic structure of matter and a good application of the classical mechanics of
particle systems. The model of classical particles is used to deduce the state equation of an
ideal gas, understand the pressure and relate the absolute temperature with the mean kinetic
energy per molecule. The theorems of work and mechanical energy are used to understand the
thermodynamic concepts of internal energy, heat and work, and to reobtain the first principle
of thermodynamics. The entropy is presented as a function proportional to the logarithm of
the enormous number of possible microstates for a given macroscopic state. Starting from this
definition and postulating the increasing of entropy when the system evolve towards equilibrium
the usual presentation of the second principle is reobtained.

[ KEY WORDS ]
thermodynamics, microscopic models, classical mechanics, statistical mechanics,
kinetic theory of gases.
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1. Introducción

Hace algún tiempo abordamos una reformulación de los contenidos de termodinámica
elemental para los alumnos del ciclo básico de la Facultad de Ciencias Exactas, Ingeniería y
Agrimensura de la Universidad Nacional de Rosario, Argentina.

Los alumnos hacen este curso de termodinámica elemental en el segundo año de su carrera
universitaria de ingeniería, después de un curso de mecánica elemental en el primer año.

Hasta el momento de nuestra reformulación, el curso de termodinámica se presentaba
sin mencionar explicaciones que involucren modelos microscópicos. Esta presentación de la
termodinámica, que está bastante generalizada aún hoy, pareciera un resabio de la visión de la
ciencia del siglo XIX, donde la estructura microscópica de la materia era una especulación no
verificada experimentalmente.

Nos pareció importante en nuestra presentación apartarnos del camino tradicional. Creímos
que una presentación de la termodinámica apoyada en los conocimientos ya adquiridos de la
mecánica de Newton aplicada a la descripción de las partículas microscópicas que constituyen
la materia podía servir para una primera presentación de la mecánica estadística y una mejor
comprensión de la termodinámica. Sirvieron de guía para esta presentación del curso los trabajos
de F. Reif (1965, 1967, 1999) y de I. V. Saveliev (1984)

También podía ser este modo de abordar el tema una oportunidad para que los alumnos
apliquen sus conocimientos de la mecánica de un sistema de partículas.

Gran parte de esta presentación se basa en el material de estudio preparado por la cátedra
para los alumnos, en las discusiones entre los docentes, y en dos trabajos anteriores (Jardón A.,
Laura R., Utges G. (2011), Laura R., Jardón A. (2012).

Después de esta sección 1, el modelo de partículas clásicas es usado en la sección 2 para
deducir la ecuación de estado de un gas ideal, entender la presión como el resultado del choque
de las moléculas contra las paredes del recipiente que contiene el gas, y relacionar la temperatura
absoluta del gas con la energía cinética media de traslación por molécula. En la sección 3 los
teoremas de trabajo y energía mecánica de un sistema de partículas se utilizan para entender
los conceptos termodinámicos de energía interna, trabajo y calor, y para reencontrar el primer
principio de la termodinámica. En la sección 4, la entropía se presenta matemáticamente como
una función proporcional al logaritmo del gran número de estados microscópicos posibles para
un estado macroscópico. A partir de esa definición y de postular que en un sistema aislado la
entropía solo puede crecer hasta que el sistema alcance el equilibrio termodinámico se obtiene
la presentación macroscópica usual del segundo principio de la termodinámica. En la sección 5
se presentan las conclusiones.

2. Gases Ideales

Una descripción microscópica del estado de un sistema, tal como el aire contenido en
una habitación, debe dar cuenta de los valores de las posiciones y velocidades de todas las
moléculas. Aquí supondremos que es una aproximación adecuada describir las moléculas con
las leyes de la mecánica clásica.

Una descripción macroscópica solo da cuenta de los valores de un número pequeño de
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ciertas magnitudes como la presión, el volumen y la temperatura que caracterizan ciertos
comportamientos colectivos de las moléculas que componen el sistema.

Para la descripción macroscópica de un fluido es necesario considerar las presiones,
densidades y temperaturas en distintas porciones del fluido. Estas porciones podrán ser pequeñas,
pero cada una de ellas debe ser macroscópica, es decir que debe contener un número muy
grande de moléculas.

Se observa que un fluido aislado encerrado en un recipiente de paredes rígidas y no
conductoras de la energía alcanzará en el transcurso del tiempo un estado en el que todas
sus partes macroscópicas tendrán la misma presión, temperatura y densidad. Este estado se
denomina equilibrio termodinámico.

Todos los gases tienen propiedades físicas particularmente simples a bajas densidades. Se
denomina gas ideal al estado al que tienden todos los gases cuando la densidad es muy pequeña,
y es posible establecer su ecuación de estado a partir de consideraciones microscópicas.

Un gas ideal es, por hipótesis, un gas diluido. Esto significa que la distancia media entre
moléculas es grande comparada con el alcance de las fuerzas intermoleculares (que es del orden
de un Amstrong, es decir 10−10 m).

La interacción entre moléculas es muy poco frecuente, y entonces podemos representar al
gas como un conjunto de moléculas, sin interacción apreciable entre ellas, que se desplazan
libremente en el interior del recipiente que las contiene.

La presión que un gas ejerce sobre las paredes del recipiente se debe al choque de las
moléculas. La presión será mayor si las moléculas se mueven más rápidamente, y también si hay
muchas moléculas. La presión y la energía cinética de traslación de las moléculas, se pueden
obtener aplicando las leyes de la mecánica clásica.

Se considera que el gas está formado por N moléculas contenidas en un recipiente cúbico,
de lado L, que las moléculas no chocan entre sí, y que cuando lo hacen contra las paredes del
recipiente el choque es elástico.

En la figura 1 hemos representado esquemáticamente el movimiento de una sola de las N
moléculas, que con velocidad −→v alcanza a una de las paredes del recipiente. Como el choque
es elástico, la molécula invierte su componente de velocidad perpendicular a la pared (en el
dibujo, la componente x), y mantiene constantes las otras componentes. En ese choque, el
cambio de impulso lineal de la molécula es ∆px = 2mvx, donde m es la masa de una molécula
y vx es la componente de la velocidad de la partícula incidente en la dirección perpendicular a
la pared (la del eje x en la figura 1)

Figura 1. Choque de una molécula contra la pared, v= (vx, vy, vz),
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v,= (−vx, vy, vz)
Después de rebotar en la pared derecha, la molécula viaja hasta alcanzar la pared de la

izquierda, donde invierte nuevamente la componente x de la velocidad. Después volverá a
chocar con la pared de la derecha, y de esta manera se repetirá indefinidamente el movimiento
de la molécula entre ambas paredes. Es fácil calcular el tiempo τ que transcurre entre dos
choques sucesivos de la molécula contra la misma pared : es el tiempo para recorrer una distancia
2L a la velocidad vx, es decir que τ = 2L/vx.

La transferencia de impulso que la pared hace sobre las moléculas por unidad de tiempo es
la fuerza que la pared ejerce sobre el gas. Claramente esta fuerza no es constante, y consistirá
en una sucesión de fuerzas impulsivas muy grandes que actúan en intervalos de tiempo muy
pequeños (la duración de estos intervalos es el tiempo que dura un choque).

La fuerza media debida a una sola molécula es Funa molécula = ∆px/τ = m(vx)2/L.
Cuando hay N moléculas la fuerza total se obtiene sumando las fuerzas de cada molécula
Ftotal = m

L

∑N
j=1 (vjx)2,

donde vjx representa la componente x de la velocidad para la molécula j (j=1,. . . ,N).
La sumatoria se puede escribir también en la siguiente forma∑N

j=1 (vjx)2 = N 1
N

∑N
j=1 (vjx)2 = N⟨v2

x⟩, ⟨v2
x⟩ ≡ 1

N

∑N
j=1 (vjx)2.

En esta última expresión ⟨v2
x⟩ representa al promedio del cuadrado de las componentes x

de las velocidades de todas las moléculas. Pero es razonable suponer que las moléculas tienen
las velocidades distribuidas de la misma manera en todas las direcciones del espacio, de modo
que para las tres direcciones x, y y z, debiera cumplirse

⟨v2
x⟩ = ⟨v2

y⟩ = ⟨v2
z⟩.

Por otra parte, resulta
⟨v2⟩ = ⟨v2

x + v2
y + v2

z⟩ = ⟨v2
x⟩ + ⟨v2

y⟩ + ⟨v2
z⟩ = 3⟨v2

x⟩,
donde ahora ⟨v2⟩ es el promedio de los cuadrados de las velocidades moleculares.
Resulta entonces
Ftotal = Nm

3L
⟨v2⟩.

La presión p sobre la pared de la derecha se obtiene como el cociente entre la fuerza Ftotal

y el área L2 de la pared, y así resulta
p = Ftotal

L2 = Nm
3L3 ⟨v2⟩ = Nm

3V
⟨v2⟩,

o también
pV = N 2

3
1
2m⟨v2⟩.

En esta expresión aparece 1
2m⟨v2⟩, que es la energía cinética media de traslación por molécula.

Esta última ecuación fue obtenida en forma teórica, usando las leyes de la mecánica de
Newton, suponiendo que el gas ideal está formado por N moléculas que no interaccionan entre
sí, y que realizan choques elásticos con las paredes del recipiente.

Se puede ahora comparar esta ecuación teórica con la ecuación de estado del gas ideal
obtenida experimentalmente pV = NkT , donde k es la constante de Boltzmann y T es la
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temperatura absoluta.
Ambas ecuaciones serán compatibles si se cumple
1
2m⟨v2⟩ = 3

2kT .
Esta es una relación de proporcionalidad entre la energía cinética media de traslación por

molécula y la temperatura absoluta, necesaria para que el modelo teórico microscópico sea
compatible con la ecuación de estado del gas ideal.

Puede entenderse también a esta última ecuación como la definición de la temperatura
absoluta en función de las variables microscópicas del gas.

3. Primer Principio de la Termodinámica

En un curso de termodinámica elemental es habitual que los conceptos de trabajo, energía
interna y calor sean presentados sin relación con los conceptos de trabajo y energía del curso
de mecánica. Una presentación microscópica del primer principio de la termodinámica, basada
en la aplicación de los teoremas de trabajo y energía de un sistema de partículas, puede ser
útil para facilitar la comprensión de los conceptos de energía interna, calor y trabajo en la
termodinámica.

Consideremos un sistema de partículas, tal como podría ser el conjunto de moléculas del
vapor de agua confinado en una caldera. Describiremos a las N partículas con las leyes de la
mecánica clásica. Representaremos con mj , r̄j y v̄j la masa, posición y velocidad de la partícula
j (j = 1, ..., N).

La energía cinética de este sistema de partículas es, por definición
Ecinética = ∑N

j=1
1
2mj(v̄j)2.

Es un resultado bien conocido de la mecánica de un sistema de partículas, que la energía
cinética del sistema respecto de un sistema de coordenadas cualquiera se puede escribir como
la suma de la energía cinética del centro de masa y la energía cinética del sistema respecto del
centro de masa:

Ecinética = 1
2M(V̄cm)2 + E ′

cinética.

En la expresión anterior M = ∑N
j=1 mj es la masa total del sistema, y V̄cm = (

∑N

j=1 mj v̄j)
M

es la velocidad del centro de masa. Además, E ′
cinética es la energía cinética del sistema de

partículas respecto de un sistema de coordenadas fijo al centro de masa:
E ′

cinética = ∑N
j=1

1
2mj(v̄′

j)2, v̄j = V̄cm + v̄′
j.

Bajo la acción de fuerzas internas y externas sobre el sistema, cambiarán las posiciones y
velocidades de las partículas. El teorema del trabajo y la energía de la mecánica establece que
la variación de la energía cinética es igual al trabajo de todas las fuerzas que actúan sobre el
sistema:

∆Ecinética = Wtotal.
Nos interesa distinguir dos tipos de fuerzas que actúan sobre el sistema: las fuerzas externas,

con su reacción fuera del sistema, y las fuerzas internas, que tienen su reacción dentro del
sistema. En el caso del vapor de agua confinado, son fuerzas externas el peso de las moléculas
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y las fuerzas que sobre ellas hacen las paredes del recipiente. Las fuerzas intermoleculares son
fuerzas internas.

Escribiremos entonces el trabajo total como la suma del trabajo de las fuerzas externas y
el de las fuerzas internas:

Wtotal = Wfuerzas externas + Wfuerzas internas.
Si suponemos fuerzas intermoleculares conservativas, su trabajo se puede escribir como

menos la variación de una energía potencial interna (Wfuerzas internas = −∆Epotencial interna). Esta
energía potencial interna es una función de las distancias intermoleculares.

La suma de la energía potencial interna y la energía cinética respecto al centro de masa
define la energía interna:

U ≡ Epotencial interna + E ′
cinética.

Reemplazando las expresiones anteriores en la ecuación ∆Ecinética = Wtotal, se obtiene:

∆
(1

2MV 2
cm

)
+ ∆U = Wfuerzas externas (1)

Conviene distinguir entre dos tipos de trabajos realizados sobre el sistema de partículas
por las fuerzas externas.

Algunos trabajos se pueden escribir como el producto de una fuerza por un desplazamiento
macroscópico, como es el caso del trabajo que realiza un pistón móvil sobre un fluido. Para
estos trabajos utilizaremos el símbolo W.

También existen trabajos de fuerzas externas que no se pueden escribir de esta forma, y
para estos trabajos se utilizará el símbolo Q. Este es el caso, por ejemplo, del agua en una pava
al fuego, donde los átomos del fondo metálico realizan complicados trabajos microscópicos
sobre las moléculas de agua.

Entonces, el teorema de la mecánica que para un sistema de partículas vincula la variación
de energía cinética con el trabajo total sobre el sistema (∆Ecinética = Wtotal), puede reescribirse
en la forma

∆
(1

2MV 2
cm

)
+ ∆U = W + Q (2)

Las cantidades U, W y Q están bien definidas en el marco de la mecánica clásica de un
sistema de partículas. Si estas cantidades se identifican con la energía interna, el trabajo y
el calor de la termodinámica, la ecuación (2) permite “reencontrar” al primer principio de la
termodinámica.

4. Segundo Principio de la Termodinámica

4.1. Entropia

Cada estado macroscópico M del sistema puede realizarse con un número extraordina-
riamente grande de estados microscópicos diferentes. Designaremos con Ω(M) al número de
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estados microscópicos que se corresponden con el macroestado M . Se define la entropía del
sistema en el estado macroscópico M como

S(M) ≡ k ln Ω(M) (3)

donde k es la constante de Boltzmann.
El segundo principio de la termodinámica establece que para todo sistema aislado el estado

macroscópico solo puede evolucionar en el tiempo de manera de aumentar su entropía (∆S ≥ 0).
Este aumento se producirá hasta que el sistema aislado alcance espontáneamente el estado
de máxima entropía, que es el estado de equilibrio termodinámico (Smáximo = S(Mequilibrio)).
Vemos entonces que el estado macroscópico de equilibrio termodinámico es aquel que se puede
realizar con el número más grande de estados microscópicos.

Se puede demostrar que la entropía es una propiedad aditiva. Para ello consideremos
un sistema compuesto por dos partes macroscópicas A y B. La parte A (B) está en el
estado macroscópico MA (MB), que puede realizarse de ΩA (ΩB) formas microscópicas
distintas. El estado macroscópico del sistema compuesto A + B puede realizarse entonces con
ΩA+B = ΩA · ΩB formas microscópicas diferentes.

La entropía del sistema compuesto A + B resulta entonces aditiva, es decir
SA+B = k ln ΩA+B = k ln ΩA + k ln ΩB = SA + SB.

4.2. Presión y Temperatura Termodinámicas

Por simplicidad, consideraremos a partir de ahora un sistema formado por un fluido isótropo
no viscoso que no intercambia materia con el medio ambiente, y en el que no se producen
reacciones químicas. Los estados macroscópicos de equilibrio pueden entonces especificarse en
función de la energía interna U y el volumen V. En particular, la entropía del sistema puede
considerarse una función de estas dos variables (S = S(U, V )). La temperatura termodinámica
T ∗ y la presión termodinámica p∗del sistema se definen con las expresiones

1
T ∗ ≡

(
∂S
∂U

)
V

, p∗

T ∗ ≡
(

∂S
∂V

)
U

.

Veamos ahora como relacionar estas cantidades T ∗ y p∗ con las temperaturas y presiones
de uso común.

Dos sistemas fluidos A y B, en interacción térmica y mecánica, llegan al equilibrio
termodinámico cuando se igualan las respectivas temperaturas y presiones termodinámicas.

Podemos imaginarnos a los dos fluidos separados por un pistón que se puede mover
libremente, y que permite el paso de la energía térmica. La energía total U y el volumen
total V del sistema compuesto se mantienen constantes durante el intercambio de calor y
trabajo entre las partes A y B. El equilibrio termodinámico se alcanza cuando la entropía total
S = SA(UA, VA) + SB(UB, VB) alcanza un máximo respecto a las variables UA, UB, VA y
VB, sujetas a las condiciones de vinculo U = UA + UB y V = VA + VB. Es fácil demostrar
que el máximo de la entropía total se produce cuando se igualan las temperaturas y presiones
termodinámicas de ambas partes (T ∗

A = T ∗
B y p∗

A = p∗
B).

Para completar la identificación de las variables T ∗ y p∗ con las temperaturas y presiones
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usuales, se debe demostrar que si el sistema es un gas ideal T ∗ y p∗ definidos en la ecuación
(3) coinciden con las temperaturas y presiones que aparecen en la ecuación de estado del gas
ideal, lo que haremos a continuación.

4.3. Entropía de un gas ideal.

Se puede obtener una expresión explícita de la entropía de un gas monoatómico ideal, con
energía interna U y volumen V, a partir de la definición de entropía dada en la ecuación (1).
Para ello se pueden contar explícitamente el número de posiciones posibles de los N átomos,
distribuidos en una partición imaginaria del volumen V en celdas disjuntas, es decir celdas que
no se intersecan entre sí. De un modo similar es posible calcular el número de distribuciones
posibles de las velocidades de los N átomos, sujetas a la condición U = ∑N

j=1
1
2m−→v 2

j . De esta
forma puede calcularse la entropía del gas, a menos de una constante aditiva relacionada con
el tamaño de las celdas imaginarias utilizadas para el cálculo del número Ω de microestados
correspondientes a la energía U y el volumen V.

La expresión deducida es
S(U, V ) = S(U0, V0) + 3

2Nk ln
(

U
U0

)
+ Nk ln

(
V
V0

)
,

donde la energía U0 y el volumen V0 son valores fijos arbitrarios de referencia.
Como hemos considerado la descripción microscópica de las moléculas del gas en el marco

de la mecánica clásica, los microestados posibles forman un continuo. Es por ello que el cálculo
de Ω requiere que “inventemos” celdas en el espacio de las fases, lo que determina que la
entropía quede definida a menos de una constante aditiva. Un tratamiento más riguroso debe
considerar la descripción cuántica del sistema de partículas que componen el gas. Entonces, el
número de microestados no es continuo y la entropía puede determinarse en forma unívoca.

Con esta expresión de la entropía se pueden calcular explícitamente la presión y temperatura
termodinámica

1
T ∗ =

(
∂S
∂U

)
V

= 3Nk
2U

, p∗

T ∗ =
(

∂S
∂V

)
U

= Nk
V

.

De estas dos expresiones se deducen las ecuaciones
U = 3

2NkT ∗, p∗V = NkT ∗.
Comparando estos resultados con las expresiones para la energía interna y la ecuación

de estado de un gas ideal monoatómico, podemos decir que para el gas ideal la presión y
temperatura termodinámica coinciden con la presión y temperaturas ordinarias (T ∗ = T y
p∗ = p).

En la subsección 4.2 vimos que dos sistemas en interacción térmica y mecánica llegan al
equilibrio cuando igualan sus temperaturas y presiones termodinámicas. Si se elige que uno de
estos sistemas sea un gas ideal monoatómico, para el otro sistema en equilibrio con el gas los
valores numéricos de su temperatura y presión termodinámica coinciden con la temperatura y
presión absolutas del gas ideal.

Es posible entonces decir que las temperaturas y presiones termodinámicas coinciden
numéricamente con las temperaturas y presiones absolutas. Eso habilita a omitir los asteriscos
en las temperaturas y presiones termodinámicas. Notemos sin embargo que los conceptos de
temperatura y presión termodinámicas son más generales que las temperaturas y presiones
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asociadas al gas ideal.

4.4. Variación de Entropía en Procesos Reversibles.

Imaginemos un proceso en un fluido que se realiza muy lentamente, en tiempos que son
mucho mayores que el tiempo de relajación del sistema, y de modo que en todo momento el
fluido tiene temperatura, presión y densidad uniforme. Un proceso con estas características, en
que el sistema pasa por sucesivos estados de equilibrio termodinámico, se denomina reversible.

Para un proceso reversible en que la energía interna y el volumen cambian en peque-
ñas cantidades dV y dU , el primer principio de la termodinámica se puede escribir en su
forma diferencial

dU = δQ − p dV (4)

donde δQ es el calor que entra al sistema. El calor es la energía que entra al sistema y
que no puede expresarse como trabajo macroscópico (Jardón, Laura y Utges, 2011).

Por otra parte, en un proceso infinitesimal reversible la variación de entropía se puede
escribir en la forma

dS = S(U + dU, V + dV ) − S(U, V ) = ( ∂S
∂U

)V dU + ( ∂S
∂V

)UdV = 1
T

dU + p
T

dV .
Comparando esta última expresión con la forma diferencial del primer principio de la

ecuación (4), se obtiene que
dS = δQ

T
.

Esta última expresión se deduce a partir de la definición S(M) = k ln Ω(M) de la
entropía de un estado macroscópico M, de las definiciones dadas para la temperatura y presión
termodinámica y de la forma diferencial del primer principio de la termodinámica dado por la
ecuación (4).

Para un proceso reversible no infinitesimal en que el sistema evoluciona entre dos estados
de equilibrio resulta entonces

∆S = S(U2, V2) − S(U1, V1) =
∫ 2

1

δQ

T
(5)

La entropía de un sistema es una función de estado, de modo que su variación entre dos
estados de equilibrio no depende del modo elegido para la evolución del sistema entre esos
dos estados. La elección de un proceso reversible, que pasa por sucesivos estados de equilibrio
termodinámico, permite utilizar la última ecuación para expresar la variación de entropía en
términos de cantidades macroscópicas tales como los calores específicos, que se pueden conocer
en forma empírica. Esto evita el uso de la ecuación (3), que requiere un conocimiento detallado
del modelo microscópico del sistema, no siempre disponible, y que presenta dificultades técnicas
muy grandes para el cálculo del número de modos microscópicos. Comparando las expresiones
(3) y (5) podemos decir que la primera es de gran utilidad para entender el concepto de entropía
mientras que la segunda es casi imprescindible para poder calcularla.
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4.5. Variación de Entropía en Procesos Irreversibles.

Consideremos ahora un sistema que intercambia calor y trabajo con otro sistema mucho
mayor a la temperatura inicial T0. El gran tamaño del segundo sistema hace que su evolución
pueda considerarse un proceso reversible, y que durante el proceso no se altere su temperatura,
por lo que recibe la denominación de foco térmico.

La evolución del sistema compuesto total es sin embargo no reversible, por lo que su
variación de entropía es positiva

∆Stotal = ∆S + ∆Sfoco ≥ 0.
En la expresión anterior, ∆S es la variación de entropía del sistema que interacciona con

el foco, y que experimenta un proceso no necesariamente reversible. La variación de entropía
del foco es la que corresponde a un proceso reversible, y por lo que vimos en la sección anterior,
puede escribirse en la forma ∆Sfoco = (−Q)

T0
, donde Q es el calor que el foco le entrega al

sistema. Se deduce entonces que

∆S ≥ Q

T0

Cuando el sistema interactúa térmica y mecánicamente con una sucesión de focos térmicos
se obtiene la expresión

∆S ≥ ∑
j

Qj

T0j
.

Para un proceso cíclico ∆S = 0, y se obtiene la llamada desigualdad de Clausius

0 ≥ ∑
j

Qj

T0j
.

Los enunciados de los postulados de Kelvin y de Clausius de la presentación tradicional
del segundo principio son ahora una consecuencia sencilla de esta desigualdad.

5. Conclusiones.

Hemos mostrado en este trabajo como es posible implementar en un curso universitario
una presentación de la termodinámica elemental a partir de modelos clásicos de partículas.

Así encontramos que la ecuación de estado del gas ideal puede obtenerse a partir de un
modelo de muchas partículas que no interaccionan entre sí y que tienen choques elásticos
contra las paredes del recipiente que las contiene. Esta presentación permite no solo obtener la
ecuación de estado del gas ideal, sino entender la presión y la temperatura absoluta

Además, modelando un sistema con las propiedades de la energía mecánica de un sistema
de partículas, permite reinterpretar la energía interna, el trabajo y el calor que aparecen en el
primer principio de la termodinámica

También, definiendo la entropía de un sistema de partículas en función del número de
microestados correspondiente a un dado estado macroscópico, y aceptando que la tendencia
natural de un sistema es a aumentar su entropía hasta alcanzar el equilibrio termodinámico, es
posible obtener la forma usual macroscópica del segundo principio de la termodinámica.
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Estas presentaciones que se apoyan en un modelo clásico de sistemas macroscópicos como
un número muy grande de partículas que obedecen la mecánica clásica, y que no abordan la
modelización con las leyes de la mecánica cuántica, permiten una primera aproximación al
mundo microscópico.
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