
Los espacio-tiempos de la
relatividad general no son
(tan) especiales

General-relativistic Spacetimes Are Not (so)
Special

Os espaços-tempos da relatividade geral não
são (tão) especiais

Álvaro Mozota Frauca
Universitat Politècnica de Catalunya, Cataluña, España.
alvaro.mozota@upc.edu
0000-0002-7715-0563

→ Recibido: 21 / 08 / 2025
→ Aceptado: 13 / 11 / 2025
→ Publicado: 19 / 01 / 2026

→ Artículo de Dossier
"Filosofía y Fundamentos de la Física"
© 2026 Álvaro Mozota Frauca CC BY 4.0

→ Cómo citar: Mozota Frauca, Á. (2026).
Los espacio-tiempos de la relatividad general no son
(tan) especiales. Culturas Científicas, 6(1), pp. 173-187.
https://doi.org/10.35588/cc.v6d7925

AR
TÍ

CU
LO

S
CI

EN
TÍ

FI
CO

S

Culturas Científicas Vol. 6 (1). pp. 173-187 (ISSN 0719-9856), Departamento de Filosofía, Universidad de Santiago de Chile.

mailto:alvaro.mozota@upc.edu
https://orcid.org/0000-0002-7715-0563
https://doi.org/10.35588/cc.v6d7925


[ RESUMEN ]

La invariancia bajo difeomorfismos de la relatividad general es una propiedad formal de
la teoría que no está presente en otras teorías. Algunos autores, muy relacionados con la
investigación en gravedad cuántica, han defendido que esta simetría hace que el espacio-tiempo
en relatividad general no pueda ser interpretado como otros espacio-tiempos. Más concretamente,
el espacio-tiempo sería solamente una estructura para representar “correlaciones”. Esta posición
se apoya en tres argumentos: el argumento de gauge, argumentos relacionalistas como el
argumento del agujero, y la relación con gravedad cuántica. En este artículo estudio esta
posición y estos argumentos y los rechazo. La posición que defiendo es que la invariancia
bajo difeomorfismos no hace a los espacio-tiempos de relatividad general diferentes en ningún
sentido profundo, y que estos deben interpretarse de forma análoga a otros espacio-tiempos.
Más precisamente, el espacio-tiempo, tanto en relatividad general como otras teorías, es un
conjunto de eventos con una serie de relaciones causales, geométricas e inerciales.

[ PALABRAS CLAVES ]
Relatividad general, Simetría gauge, Espacio-tiempo, Invariancia bajo difeomorfis-
mos, Gravedad cuántica

[ ABSTRACT ]

The invariance under diffeomorphisms of general relativity is a formal property of the theory
that is not present in other theories. Some authors, closely related to research in quantum
gravity, have argued that this symmetry means that spacetime in general relativity cannot be
interpreted like other spacetimes. More specifically, spacetime would be only a structure for
representing “correlations.” This position is supported by three arguments: the gauge argument,
relationalist arguments such as the hole argument, and the relationship with quantum gravity.
In this article, I study this position and these arguments and reject them. The position I defend
is that invariance under diffeomorphisms does not make the spacetimes of general relativity
different in any deep sense, and that they should be interpreted analogously to other spacetimes.
More precisely, spacetime, both in general relativity and other theories, is a set of events with
a series of causal, geometric, and inertial relations.

[ KEY WORDS ]
General relativity, Gauge symmetry, Spacetime, Diffeomorphism invariance, Quan-
tum gravity
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1. Introducción

La teoría de la relatividad general supuso un cambio fundamental en la forma en la que
entendemos y conceptualizamos el espacio-tiempo. El espacio-tiempo de la relatividad general
combina el espacio y el tiempo en una sola entidad, esta entidad es dinámica, y, además,
permite hacer predicciones sobre “puntos” donde comienza o acaba el universo. Por si no fuera
suficiente, el desarrollo de teorías de gravedad cuántica promete revolucionar todavía más
nuestra imagen sobre el espacio-tiempo. De hecho, parte de la comunidad de investigadores
en gravedad cuántica propone interpretaciones del espacio-tiempo en relatividad general que
van mucho más allá de las interpretaciones estándar. En este sentido, estos investigadores
consideran que la invariancia bajo difeomorfismos de la teoría implica cambios radicales en la
forma que tenemos que entender el espacio-tiempo.

En este artículo quiero argumentar contra este tipo de postura. Es decir, defenderé que la
invariancia bajo difeomorfismos de la relatividad general no hace que el espacio-tiempo de la
relatividad general sea aún más especial o que requiera de una interpretación más radical o
exótica. Mientras que los autores en gravedad cuántica ven el espacio-tiempo de la relatividad
general y otros espacio-tiempos como entidades completamente diferentes, yo voy a argumentar
que pertenecen a una misma categoría y que requieren igual interpretación.

Más precisamente, en este artículo voy a defender que el espacio-tiempo está constituido
por eventos o puntos del espacio-tiempo y por una serie de relaciones causales, geométricas e
inerciales. Esto está en oposición a la postura de autores como Carlo Rovelli (Rovelli, 1991b,
1991c, 2004; Rovelli & Vidotto, 2022), que han defendido que el espacio-tiempo en nuestros
modelos es similar a una estructura auxiliar, y que, una vez tenida en cuenta la invariancia bajo
difeomorfismos, el único contenido de nuestros modelos son “correlaciones”, es decir, relaciones
entre diferentes variables en nuestros modelos. De esta manera, autores como Rovelli rechazan
que parte de la estructura espacio-temporal de nuestros modelos, como la estructura causal o
de orden, represente algo físico.

La discusión en este artículo conecta con debates antiguos sobre la interpretación de la
relatividad general, la covarianza general, y la interpretación de nuestros modelos de espacio-
tiempo. De hecho, ya en 1917 Kretschmann (Kretschmann, 1917) argumentó que la covarianza
general no tiene contenido físico, y desde entonces mucho se ha escrito sobre el tema. Este
artículo, por lo tanto, puede verse como contribuyendo a una versión contemporánea de este
debate, donde yo contribuyo defendiendo una posición semejante a la de Kretschmann. Para
clarificar, permítanme insistir en que mi posición es que el espacio-tiempo en relatividad general
se diferencia del espacio-tiempo en otras teorías en ser dinámico y en las estructuras causales,
geométricas e inerciales que presenta, pero que no requiere de una interpretación radicalmente
diferente como proponen los autores de gravedad cuántica. Para más referencias sobre el debate
histórico y en la filosofía de la física contemporánea, refiero al lector a (Pooley, 2017) y a las
referencias allá citadas.

La estructura de este artículo es la siguiente. En la sección 2 comenzaré presentando la
postura que el espacio-tiempo de la relatividad general se tiene que interpretar de manera
diferente debido a la invariancia bajo difeomorfismos y los tres argumentos en que se apoya
esta postura. En la sección 3 presentaré contraargumentos contra esta posición y en la sección
4 concluyo insistiendo en que el espacio-tiempo en relatividad general se tiene que interpretar
de la misma manera que en otras teorías.
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2. La singularidad de la relatividad general: la invariancia
bajo difeomorfismos

Mientras que teorías como la mecánica Newtoniana o la relatividad especial se suelen
expresar en términos de sistemas de coordenadas especiales (los sistemas de coordenadas
inerciales), la relatividad general es generalmente covariante, lo que quiere decir que se expresa
en términos de sistemas de coordenadas arbitrarios. Esto implica que las ecuaciones del
movimiento de la relatividad son invariantes cuando se cambian las coordenadas en las que
describimos el espacio-tiempo. Desde un punto de vista más técnico decimos que los modelos de
relatividad describen una configuración en una variedad diferenciable de una serie de campos, que
describen tanto la geometría del espacio-tiempo como su contenido en materia y otros campos.
Un difeomorfismo es una transformación suave que toma una configuración y la desplaza
dentro de la misma variedad. Que la relatividad general sea generalmente covariante implica
que dos modelos relacionados por un difeomorfismo sean interpretados como perfectamente
equivalentes: los dos describen el mismo espacio-tiempo con la misma configuración de campos
físicos1.

Diferentes autores utilizan diferentes matices o diferentes formulaciones del hecho de que
la relatividad general es generalmente covariante o invariante bajo difeomorfismos, pero todos
concuerdan en la parte técnica de la definición2. La controversia comienza a la hora de analizar
si el hecho de que la teoría tenga esta simetría tiene algún tipo de contenido o consecuencia
física.

Como he avanzado en la introducción, yo defiendo que no. Es decir, yo defiendo que la
invariancia bajo difeomorfismos de la relatividad general no tiene ninguna consecuencia física
ni hace que la interpretación del espacio-tiempo en esta teoría sea radicalmente diferente a la
interpretación de otros espacio-tiempos. Aquí debo puntualizar que el único sentido en que
acepto que la invariancia bajo difeomorfismos tiene relevancia física es que como el espacio-
tiempo de relatividad general es dinámico, entonces la teoría debe expresarse independientemente
de ningún sistema de coordenadas. Esto es porque como el espacio-tiempo varía de modelo
a modelo, no podemos fijar ningún sistema antes de especificar el contenido en materia y
solucionar las ecuaciones del movimiento. En este sentido, la invariancia bajo difeomorfismos es
una necesidad formal para tener espacio-tiempos dinámicos. Dejando esto de lado, la invariancia
bajo difeomorfismos no tiene ningún otro tipo de consecuencia ni física ni a la hora de interpretar
los modelos.

Esto está en contraposición con las posturas contra las que quiero argumentar en este
artículo. En general, estas posiciones están muy relacionadas con los análisis que se hacen en el
contexto de teorías de gravedad cuántica, pero son posiciones que en principio son defendibles
ateniéndose solo a la estructura de la relatividad general y sin tener en cuenta ninguna teoría
de gravedad cuántica. Por ejemplo, Carlo Rovelli (Rovelli, 1991a, 1991b, 1991c, 2004, 2011;
Rovelli & Vidotto, 2022) ha sostenido que, debido a la invariancia bajo difeomorfismos de la
relatividad general, de toda la estructura de nuestros modelos únicamente deben considerarse
como predicciones las “correlaciones”. Por correlaciones, Rovelli entiende los valores que ciertas

1Para una discusión y definición matemáticamente más precisa, véase (Mozota Frauca, 2024a; Norton et
al., 2023; Weatherall, 2021)

2(Pooley, 2017) recoge muchas de las sutilezas y matices presentes en las distintas definiciones de invariancia
bajo difeomorfismo y en las consecuencias que tiene.
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variables toman cuando otras toman otros valores. Por ejemplo, si tenemos un modelo con cinco
campos escalares, las correlaciones serían funciones de la forma ϕ1(ϕ2, ϕ3, ϕ4, ϕ5), es decir, los
valores que toma uno de los campos en función del resto de los campos. Esto parece llevar a
Rovelli a una forma radical de relacionalismo3, en la que las estructuras espacio-temporales no
son consideradas predicciones de la teoría.

Similarmente, filósofos de la física como John Earman y Dean Rickles han defendido que la
invariancia bajo difeomorfismos de la relatividad general implica que el espacio-tiempo no pueda
interpretarse de las maneras estándar o tradicionales, es decir, sustantivalistas o relacionalistas,
sino que sea necesaria una nueva interpretación del espacio-tiempo, que sería estructuralista y
no aplicable a teorías como la mecánica Newtoniana o la relatividad especial (Earman, 2006;
Rickles, 2008). Además, Earman ha defendido que la invariancia bajo difeomorfismos también
requiere una nueva metafísica del tiempo (Earman, 2002). En este artículo no voy a entrar
en demasiado detalle sobre estas posiciones metafísicas, pero las voy a rechazar al rebatir sus
argumentos y al defender que todos los modelos de espacio-tiempo (o espacio y tiempo) se
pueden interpretar de manera análoga.

A continuación explico los tres argumentos por los cuales estos autores han defendido que
la invariancia bajo difeomorfismos de la relatividad tiene impacto a la hora de interpretar la
teoría.

2.1. Argumento de gauge

El principal argumento para defender que la invariancia bajo difeomorfismos tiene como
consecuencia que el contenido de un modelo de relatividad general son solo las “correlaciones”
predichas por el modelo es el argumento de gauge. Este argumento establece una analogía
entre las transformaciones gauge en teorías como el electromagnetismo y los difeomorfismos en
relatividad general. Las teorías gauge comparten ciertas propiedades con las teorías invariantes
bajo difeomorfismos, como tener múltiples modelos equivalentes que representan la misma
realidad física o tener Lagrangianos singulares. En la formulación Hamiltoniana de una teoría
gauge, aparece un concepto muy útil: el concepto de observable. Un observable es una cantidad
física que el modelo predice, y es independiente de cuál de los modelos equivalentes utilicemos.
En el caso del electromagnetismo, el campo electromagnético es el observable de la teoría,
mientras que los potenciales eléctricos y magnéticos (o, en su versión compacta, el 4-potencial
Aµ) dependen de cada modelo, y no se corresponden directamente con cantidades físicas.

Para teorías gauge, en el formalismo Hamiltoniano existe una forma directa de identificar
observables. Los observables O son funciones en el espacio de fases que satisfacen la relación
{O, G} = 0, donde G es el generador de transformaciones gauge4 y los corchetes representan
el corchete de Poisson.

Dada la semejanza entre las teorías gauge y la relatividad general, el argumento de gauge
consiste en aplicar esta forma de identificar observables al caso de la relatividad general. Es
decir, según este argumento, el contenido de un modelo de relatividad general se puede expresar
como el conjunto de funciones O que satisfacen {O, G} = 0 para el caso en que G es cualquier

3Este relacionalismo ha sido descrito y opuesto en (Mozota Frauca, 2025; Thébault, 2012, 2021)
4Recientemente ha habido una controversia (Mozota Frauca, 2024b; Pitts, 2014, 2022, 2024; Pooley &

Wallace, 2022) sobre cuál es la mejor manera de definir transformaciones gauge en el formalismo Hamiltoniano.
Para la discusión en este artículo la forma exacta de la transformación no será relevante.
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generador de difeomorfismos.
Esta condición, que para el caso de las teorías gauge funciona bien, solo puede ser satisfecha

por funciones que son constantes en el tiempo. Intuitivamente5, como los difeomorfismos pueden
trasladar una función en el tiempo, sólo cantidades que no varían no se ven afectadas por
estas transformaciones. Por esto mismo, en la literatura los observables definidos de esta
manera se conocen como “observables congelados” (frozen observables). Que los observables
no evolucionen en el tiempo es una de las razones en (Earman, 2002) para sugerir una nueva
metafísica del tiempo.

Ante este resultado, a primera vista absurdo, Rovelli (Rovelli, 1991b, 1991c) demostró que
para ciertos sistemas, la situación no es tan grave. Por ejemplo, para versiones parametrizadas de
la mecánica clásica se puede demostrar que existen constantes del movimiento que representan
correctamente la dinámica del sistema. Más concretamente, en estos sistemas se describe la
trayectoria en el espacio-tiempo de un cuerpo como dos funciones, x(τ) y t(τ) que dependen
de un parámetro arbitrario τ . Bajo cambios de coordenada τ , x y t se transforman, pero se
puede definir la función X(T, x, t) que representa la posición para el instante t = T , que se
mantiene constante aunque x y t evolucionen. En este sentido, existe una familia de funciones
que captura el contenido del modelo y del que se puede extraer un sentido de evolución. La
dinámica no sería dinámica con respecto a τ , sino con respecto a T . Por esto mismo, a estas
funciones también se las conoce como “constantes del movimiento que evolucionan” (evolving
constants of motion).

La idea de Rovelli y colaboradores es extender este análisis a teorías como relatividad
general. Como X(T, x, t) tiene la forma de una correlación, es decir, una relación funcional
entre las variables x y t, la idea es que en teorías como relatividad general, los observables
también sean correlaciones, pero entre las variables de la teoría. A partir de esta comparación,
Rovelli y colaboradores han construido su visión del espacio-tiempo.

En resumen, el argumento consta de dos pasos. Primero, la analogía entre los difeomor-
fismos y las transformaciones gauge se utiliza para llegar a la conclusión que el contenido de
la relatividad general está representado como funciones constantes. Segundo, el análisis de
modelos parametrizados se emplea para argumentar que estas funciones representan correlacio-
nes (y nada más). En la sección 3 daré motivos por los cuales creo que los dos pasos están
equivocados.

2.2. Relacionalismo y argumento del agujero (hole argument)

La segunda motivación para argumentar que el contenido físico de un modelo de relatividad
general son sólo sus “correlaciones” viene de una interpretación relacionalista de estos modelos,
basada en parte en el famoso argumento del agujero (hole argument). Por ejemplo, (Rovelli,
2004) cita este argumento para asegurar que los observables de la relatividad general tienen
que ser correlaciones.

El argumento, formulado originalmente por Einstein, explota el hecho de que en una teoría
invariante bajo difeomorfismos, distintos puntos de la variedad diferenciable pueden representar
el mismo evento. Para ilustrarlo, se toma una categoría de difeomorfismos muy particular:

5Para una justificación más técnica, véase (Kuchař, 1991, 1992, 1993; Mozota Frauca, 2023; Pitts, 2018;
Pons et al., 2010)
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Figura 1: Argumento del agujero. Representación de dos modelos difeomórficos relacionados
por una “transformación de agujero”. En los dos modelos se representa la trayectoria de un
cuerpo, pero en una pasa por el punto p y en la otra por el punto p′.

los difeomorfismos de agujero. Estos difeomorfismos tienen la peculiaridad de que no tienen
ningún efecto en la mayor parte de la variedad salvo en una región, el agujero, donde sí que
tienen un efecto. Por ejemplo, en la figura 1 se representan dos modelos relacionados por un
difeomorfismo de agujero. Los dos modelos representan un espacio-tiempo en el hay un cuerpo
trazando una trayectoria, pero difieren en la trayectoria dentro del agujero. En particular, en
uno de los modelos la trayectoria pasa por el punto p, y en el otro pasa por p′.

Dado que diferentes modelos asignan diferentes propiedades a un mismo punto en la
variedad, afirmaciones como “el cuerpo pasa por el punto p” no se consideran parte de las
predicciones del modelo6. Por lo tanto, se ha de ser cuidadoso a la hora de hablar de puntos en
el espacio-tiempo y puntos en la variedad diferencial, ya que no siempre coinciden.

La interpretación que autores como Rovelli y Earman (Earman, 2002, 2006; Rovelli,
2004) hacen del argumento del agujero es que no se puede interpretar el espacio-tiempo de
la relatividad general de la misma manera que otros espacio-tiempos. Según estos autores,
este argumento refuerza el argumento de gauge para afirmar que ya no podemos hablar de
propiedades físicas en un punto, sino que tenemos que adoptar la interpretación en términos de
correlaciones.

En particular, para Rovelli (Rovelli, 2004), el argumento (y la covarianza general de la
relatividad general) implica que las coordenadas de relatividad general tienen un significado
radicalmente diferente que las coordenadas en otros espacio-tiempos. Por ejemplo, en el espacio-

6Esta es la interpretación más extendida. Hay otra alternativa posible, que no me consta que haya nadie
que la defienda, que sería afirmar que la afirmación “el cuerpo pasa por el punto p” es una predicción del
modelo, y que por tanto dos modelos relacionados por un difeomorfismo representan posibilidades diferentes.
La teoría de la relatividad sería indeterminista en este caso, con predicciones que no se podrían comprobar de
forma empírica. En (Earman & Norton, 1987) se puede encontrar un argumento contra este tipo de posición.
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tiempo de Minkowski, el espacio-tiempo de la relatividad especial, según Rovelli podemos
afirmar que el valor de un campo escalar en un punto ϕ(xµ) es un observable, mientras que si
estamos en un espacio-tiempo de la relatividad general, ϕ(xµ) no sería un observable. El motivo
es que las coordenadas xµ en relatividad general son arbitrarias, mientras que en relatividad
especial tienen un significado bien definido. Es por esto que Rovelli asegura que necesitamos
definir observables relacionales como la correlación ϕ1(ϕ2, ϕ3, ϕ4, ϕ5) de la que hablábamos
más arriba. Volviendo al caso del agujero, ϕ(xµ) representaría el valor del campo en el punto p,
y cambiaría de modelo a modelo, mientras que ϕ1(ϕ2, ϕ3, ϕ4, ϕ5) se mantendría constante en
los dos modelos, ya que en uno estaría asociado al punto p, y en el otro al punto p′.

2.3. Gravedad cuántica

Por último, una de las motivaciones más importantes, por lo menos desde el punto de
vista histórico, que llevaron a autores como Rovelli a adoptar la postura que tienen sobre la
relatividad general es la relación con teorías o prototeorías de gravedad cuántica. De hecho, si
no se hubiera intentado cuantizar la relatividad general utilizando el formalismo Hamiltoniano
siguiendo la cuantización de Dirac, parece bastante improbable que nadie hubiera defendido
posiciones como las de Rovelli o Earman.

El procedimiento de cuantización de Dirac se emplea para cuantizar teorías gauge, y dada
la analogía entre teorías gauge y teorías invariantes bajo difeomorfismos, muchos autores han
aplicado este procedimiento a la relatividad general. El resultado es similar en algunos aspectos
a lo que encontramos en la sección 2.1 cuando discutimos la invariancia bajo difeomorfismos
como una simetría gauge. Como los difeomorfismos generan desplazamientos temporales,
encontramos que imponer invariancia es equivalente a tener estados y observable que no
evolucionan en el tiempo. Este es el famoso problema del tiempo de la gravedad cuántica7.

El argumento, implícito muchas veces, por parte de la comunidad de gravedad cuántica
parece ser: ya que en la teoría cuántica parece que necesitamos un cambio radical en nuestra
forma de entender el espacio-tiempo, ¿por qué no adoptar este cambio antes, en la teoría
clásica? Las relaciones entre los formalismos cuánticos y clásicos hacen que la búsqueda
de consistencia sea lógica y atractiva: si en la teoría cuántica tenemos observables que no
evolucionan en el tiempo, parece coherente adoptar la misma posición en la teoría clásica.

Además, hay una diferencia entre el caso clásico y cuántico. Mientras en el caso de
relatividad general hay muchas posiciones disponibles sobre cómo formalizar y conceptualizar
la teoría, en el caso cuántico parece no haber muchas alternativas. Es decir, como hay pocas
cuantizaciones de la relatividad general disponibles, y estas siguen la cuantización de Dirac o
alguna equivalente, parece que el problema del tiempo es inescapable. Esto quiere decir que
en estas teorías de gravedad cuántica no hay disponible una alternativa en la que podamos
entender la evolución temporal de una forma más “tradicional”.

7Para discusiones en detalle sobre el problema del tiempo, véase (Isham, 1993; Kuchař, 1992; Mozota
Frauca, 2023, 2024c)
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3. Rebatiendo estos argumentos

Una vez expuesta la posición que quiero rebatir en este artículo, y los argumentos en que
se apoya, en esta sección presento contraargumentos por los cuales creo que los argumentos
anteriores no son válidos.

3.1. Difeomorfismos y gauge

En la sección 2.1 he presentado el argumento de gauge como un argumento en dos pasos.
El primero es establecer una analogía entre transformaciones gauge y difeomorfismos, para
incorporar el concepto de observable, que para teorías invariantes bajo difeomorfismos tienen
que ser constantes del movimiento. El segundo es extender el análisis de modelos parametrizados
para concluir que el único contenido de los modelos son correlaciones. Creo que en los dos
pasos del argumento hay problemas serios que hacen que el argumento no sea válido.

En primer lugar, creo que la analogía entre transformaciones gauge y difeomorfismos es
limitada. Diversos autores han argumentado en detalle por qué creemos que esto es así (Kuchař,
1993; Mozota Frauca, 2023, 2024c, 2024a; Pitts, 2018; Pons et al., 2010; Pons & Salisbury,
2005). Muy sintéticamente, podemos decir que los difeomorfismos pueden ser entendidos como
transformaciones gauge desde un punto de vista global, pero no desde un punto de vista local.
Es decir, si consideramos modelos enteros relacionados por difeomorfismos, claramente son
equivalentes y el difeomorfismo puede ser entendido como una teoría gauge. Pero si miramos
el efecto de un difeomorfismo en un punto de la variedad (o en un valor de las coordenadas),
el efecto es que este punto matemático ahora representa otro evento (punto “físico”) y no
podemos afirmar que la transformación deje intacto el contenido físico descrito en un punto.
En este sentido, no tiene sentido pedir que los observables sean invariantes. Antes y después
de la transformación, el mismo punto matemático representa eventos diferentes y, por tanto,
uno espera que los campos físicos cambien de valor bajo estas transformaciones. Por ejemplo,
si tenemos un campo escalar (un campo de temperatura, por ejemplo), este tomará valores
diferentes en puntos del espacio-tiempo diferentes. Transformar el valor en un punto según
un difeormofismo no se corresponde con una representación diferente de lo que sucede en un
punto fijo, sino con dos situaciones físicas diferentes.

Permítanme una analogía para ilustrar esto. Los modelos de espacio-tiempo se pueden
entender de una forma parecida a como entendemos los mapas. Un mapa es una representación,
digamos en papel, de la geografía de una parte del planeta. En este sentido, el mapa es análogo
a un modelo de espacio-tiempo: en ambos casos tenemos puntos en nuestra representación
(puntos en papel en el mapa, puntos matemáticos en el modelo) que representan puntos
en la realidad (puntos sobre la superficie de la tierra o eventos en el espacio-tiempo). Un
difeomorfismo se corresponde con cambiar un mapa por otro. Cuando cambiamos de mapa,
puede que cambie la orientación, la escala, o la parte del mundo que representamos. Por esto,
lo más normal es que un mismo punto en el papel (por ejemplo, el que está en el centro del
mapa), represente un punto geográfico diferente. En el caso de los difeomorfismos, sucede lo
mismo: cuando cambiamos de representación, cambiamos la relación entre los puntos en el
modelo con los puntos en el mundo real. Desde este punto de vista, no tiene sentido decir que
lo que representa el mapa o el modelo de espacio-tiempo es lo que no cambia en un punto de
la representación cuando cambiamos de representación. Esto sería decir que las propiedades de
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un punto tienen que ser las mismas no importa qué represente. En el ejemplo, no importaría si
un punto representa Barcelona o si representa Buenos Aires, que tendría que tener las mismas
propiedades.

Por este motivo, creo que hay rechazar la analogía con teorías gauge y la definición de
observable. Tenemos un entendimiento claro de cuáles son las predicciones de la relatividad
y la invariancia bajo difeomorfismos no supone ningún obstáculo para ello. La definición de
observable no es necesaria, y en nuestra comprensión de los modelos de relatividad general
incluimos mucho más que correlaciones.

Relacionado con esto, también creo que la segunda parte del argumento se puede rechazar.
Por una parte, la analogía entre sistemas parametrizados y relatividad general es problemática,
ya que la relatividad general no es una teoría parametrizada. Las correlaciones que se pueden
definir para los modelos parametrizados son sencillas y pueden cubrir el contenido físico de un
modelo parametrizado, ya que encontrar estas correlaciones es equivalente a deparametrizar la
teoría8.

Para el caso de relatividad general, como la teoría no es parametrizable, la construcción
de cantidades invariantes es mucho más complicada, y, de hecho, se puede demostrar que para
modelos generales las correlaciones no se corresponden con funciones continuas y diferenciables
que satisfacen {O, G} = 0. Aun así, la definición se podría modificar para incluir este tipo de
funciones como observables.

Podemos considerar por ejemplo un sistema de tres osciladores armónicos con frecuencias
diferentes (y que no sean múltiplos enteros de una misma frecuencia) y las correlaciones entre
las posiciones de estos. Una correlación que se puede construir como invariante es la función
X3(X1, X2, x1, p1, x2, p2, x3, p3) que representa la posición del tercer oscilador en función de
las posiciones de los otros dos y de las coordenadas de un punto en el espacio de fases. Se puede
demostrar que esta cantidad es invariante si se transforman las coordenadas x1, p1, x2, p2, x3, p3
según un difeomorfismo, o, lo que es equivalente, evolucionando estas coordenadas según la
dinámica del sistema. Desde un punto de vista intuitivo, esto es así porque la función X3 calcula
el valor de la posición tomando x1, p1, x2, p2, x3, p3 como condiciones iniciales, y cambiar las
condiciones iniciales por otras en la misma trayectoria no afecta al resultado.

Explicado con otro ejemplo, dado un modelo determinista del sistema solar, no importa si
tomo el estado del sistema solar ahora, o el estado del sistema solar dentro de un año como
condiciones iniciales para hacer la predicción de cuál va a ser la posición de Júpiter cuando la
Tierra, el Sol y Marte estén alineados. Elija el momento que elija, la predicción será la misma.

Las correlaciones pueden por tanto ser definidas como cantidades invariantes (incluso si
no lo creemos necesario), y Rovelli considera que cubren todo el contenido del modelo. Sin
embargo, esto no es cierto: el modelo incluye mucho más que eso. En particular, nuestro
modelo incluye relaciones espacio-temporales. Por ejemplo, el modelo puede predecir que los
osciladores 1 y 2 toman las siguientes parejas de posiciones en este orden: (1,0), (2,1), (0,0). Las
correlaciones X3 predicen correctamente los valores que tomará el tercer oscilador en cada caso,
pero no nos dicen nada sobre el orden. Si consideramos, como creo que debemos considerar,
que las relaciones espacio-temporales forman parte de nuestros modelos, las correlaciones no
cubren todo.

El argumento para rechazar la relación de orden en nuestro ejemplo sería que no es

8Este punto y sus consecuencias están analizados en detalle en (Mozota Frauca, 2023, 2024c)
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una cantidad invariante, pero esto no es cierto. Es decir, podemos construir una función
O(X1, X2, X ′

1, X ′
2, x1, p1, x2, p2, x3, p3) que valga 1 si la pareja X1, X2 sucede antes que la

pareja X ′
1, X ′

2 o -1 si el orden es el contrario. Igual que antes, se puede demostrar que esta
función es invariante si se cambian las condiciones iniciales. Para el caso de la relatividad
general, lo mismo aplica: cualquier predicción del modelo, no sólo las correlaciones, se puede
escribir como función de las condiciones iniciales de forma que sea invariante, y por tanto la
afirmación que sólo las correlaciones son físicamente relevantes no se sustenta9.

En resumen, la analogía entre teorías gauge y teorías con invariancia bajo difeomorfismos
no se sustenta dadas las diferencias entre los distintos tipos de transformaciones, pero incluso
si aceptáramos la analogía, la condición de invariancia no selecciona solo las correlaciones, sino
que toda la estructura espacio-temporal de la teoría tendría que ser considerada observable y
parte de nuestros modelos.

3.2. Argumento del agujero en otras teorías

El argumento del agujero, tal como lo plantean Rovelli y Earman, es sorprendente en su
conclusión, ya que su análisis difiere mucho de los análisis estándar en la literatura. Según la
gran mayoría de autores (posición que yo comparto)10, la conclusión del argumento del agujero
es que hay dos interpretaciones sobre qué representan nuestros modelos de espacio-tiempo,
conocidas como relacionalismo y sustantivalismo sofisticado. Ninguna de las dos afirma o
implica que todo el contenido de nuestros modelos sean las correlaciones, así que parece que el
análisis estándar de la literatura sirve para refutar la posición de Earman y Rovelli.

También es importante rebatir la posición de Rovelli sobre el distinto rol y significado de
las coordenadas en relatividad general y otros modelos de espacio tiempo. Para Rovelli, que la
relatividad general se exprese en lenguaje de la geometría diferencial tiene las implicaciones que
estamos comentando en este artículo. Pero como es bien conocido, cualquier teoría se puede
expresar de una forma covariante en términos de campos sobre una variedad diferencial. Esto
permite trasladar los argumentos relacionalistas, y el argumento del agujero, a otras teorías.
Por ejemplo, podemos considerar el argumento para el caso de un espacio-tiempo Newtoniano.

A pesar de esto, Rovelli insiste en que hay una diferencia entre ambas teorías. Las
coordenadas de la mecánica Newtoniana estarían asociadas con objetos de medida como relojes
y cintas métricas, mientras que en el caso de la relatividad general son arbitrarias. Este punto
del argumento parece especialmente débil, ya que en el caso de la relatividad general también
podemos asociar las coordenadas en un modelo (esto implica que la métrica está definida) a
las mediciones de relojes y cintas métricas. En este sentido, dado que ambas teorías se pueden
expresar de una manera análoga y la interpretación también es análoga11, cuesta ver ninguna
diferencia que justifique una interpretación diferente de la relatividad general.

Una posibilidad para Rovelli sería buscar una interpretación en términos de correlaciones
también de la mecánica Newtoniana, y parece que en algunos pasajes12 muestra una cierta

9Todas estas afirmaciones técnicas las demuestro en un artículo técnico que se encuentra en revisión en el
momento de escribir este artículo.

10En el artículo de enciclopedia (Norton et al., 2023) se puede encontrar una discusión en detalle de estas
posiciones y una lista actualizada de la literatura en el tema.

11En (Mozota Frauca, 2024a) desarrollo la analogía en mucho más detalle y profundidad.
12Véase la sección de mecánica Newtoniana en (Rovelli, 2011).
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inclinación a hacerlo, pero esto estaría en tensión con la motivación de gauge que no aplica
en el caso de la mecánica Newtoniana. Otra debilidad de esta posición es que en mecánica
Newtoniana nadie ha defendido el tipo de posición que defiende Rovelli, y ciertamente no
parece una posición atractiva.

3.3. El problema del tiempo es un problema, no una solución

Por último, la tercera motivación es la relación con teorías de gravedad cuántica. Como
he comentado, el resultado de aplicar la cuantización canónica a la teoría de la relatividad
general es un formalismo sin evolución temporal, y esto encaja bien con la visión de que los
observables en relatividad general son constantes del movimiento.

Este tipo de razonamiento corre el riesgo de ser circular. Si el análisis de la teoría clásica
se justifica en el modelo cuántico, ¿en qué se justica el modelo cuántico? Una rápida revisión
de la literatura permite ver que el modelo cuántico muchas veces se justifica en razonamientos
clásicos, y por tanto, no se trata de una justificación independiente.

El análisis en este artículo pone en duda el análisis puramente clásico, y por tanto, para que
la relación con la teoría cuántica fuera una motivación atractiva para justificar la posición de
autores comos Rovelli y Earman, necesitaríamos que la teoría cuántica estuviera bien justificada
y fuera tan independiente de la clásica como fuera posible.

Mi opinión es que este no es el caso. El problema del tiempo hace que la interpretación
y justificación de los modelos cuánticos construidos al cuantizar modelos invariantes bajo
difeomorfismos quede seriamente cuestionada, si es que son posibles. Igual que pasaba en el
caso clásico, la comparación con modelos parametrizados, común en la literatura, puede llevar
a equívocos. En este sentido, si como yo y otros autores en la literatura13 se considera que
hay serios motivos para dudar de que los métodos de cuantización canónica son aplicables a la
relatividad general, entonces cualquier argumento que se base en estas teorías de gravedad
cuántica para justificar una interpretación de la teoría clásica tendrá muy poca fuerza.

4. Conclusiones

En este artículo he presentado y rebatido la posición que algunos autores, influenciados
por la investigación en gravedad cuántica, tienen sobre cómo interpretar el espacio-tiempo en
relatividad general. Estos autores defienden que en relatividad general el espacio-tiempo es sólo
una estructura auxiliar para representar el “auténtico” contenido de nuestros modelos, que
serían las correlaciones entre variables físicas. Esto estaría en contraposición con otros modelos
de espacio-tiempo (o de espacio y tiempo), en los que sí que es posible interpretar la evolución
como evolución en el espacio y el tiempo.

En este artículo he analizado los tres principales argumentos para mantener esta postura y
los he rechazado. La posición que defiendo sobre qué es el espacio-tiempo y cómo interpretarlo
en nuestros modelos, es que el espacio-tiempo es un conjunto de eventos con una serie de
relaciones causales, geométricas e inerciales. Estas relaciones forman parte de las predicciones
de nuestros modelos y son observables en el sentido más intuitivo del término. Esto es cierto

13Otra vez, véase (Isham, 1993; Kuchař, 1992; Mozota Frauca, 2023, 2024c)
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para todos nuestros modelos de espacio-tiempo, incluidos los modelos de relatividad general.
En este sentido, los espacio-tiempos de relatividad general son exactamente iguales al resto.
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